Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T00:53:11.409Z Has data issue: false hasContentIssue false

A Solid Polymer Electrolyte from Photo-Crosslinked Polytetrahydrofuran and a Cycloaliphatic Epoxide for Lithium-Ion Conduction

Published online by Cambridge University Press:  18 June 2020

Francielli S. Genier
Affiliation:
Syracuse University, Department of Biomedical and Chemical Engineering, Syracuse, NY, 13244
James Barna
Affiliation:
Cazenovia High School, Cazenovia, NY, 13035.
Jiayue Wang
Affiliation:
Syracuse University, Department of Biomedical and Chemical Engineering, Syracuse, NY, 13244
Saeid Biria
Affiliation:
Syracuse University, Department of Biomedical and Chemical Engineering, Syracuse, NY, 13244
Ian D. Hosein*
Affiliation:
Syracuse University, Department of Biomedical and Chemical Engineering, Syracuse, NY, 13244
*
*Corresponding Author: Ian D. Hosein ([email protected], 315.443.4126)
Get access

Abstract

We report on the synthesis, properties, and ion conductivity of a solid polymer electrolyte produced from polytetrahydrofuran (PTHF) photo-crosslinked with 3,4-epoxycyclohexylmethyl 3ʹ,4ʹ-epoxycyclohexane carboxylate (Epoxy), via an active monomer mechanism that facilitates the reaction of the native hydroxyl and epoxide end-groups. Crosslinked samples were loaded with different quantities of lithium tetrafluoroborate (LiBF4) and evaluated by electrochemical spectroscopy impedance (EIS) to determine their ionic conductivity. An increase in lithium salt loading led to an increase in ionic transport, reaching competitive conductivities of up to 10-3 S/cm at temperatures typical for battery operation. Thermal analysis confirms the amorphous structure and high thermal stability (30-90°). The mechanical analysis shows the materials possess suitable stiffness for applications. The results demonstrate a new synthetic route to tunable crosslinked networks for a broad range of chemical building blocks to achieve high lithium-ion conduction and attain desirable thermal and mechanical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, R.C. and Pandey, G.P., J. Phys. D. Appl. Phys. 41, (2008).CrossRefGoogle Scholar
Quartarone, E. and Mustarelli, P., Chem. Soc. Rev. 40, 2525 (2011).CrossRefGoogle Scholar
Sun, C., Liu, J., Gong, Y., Wilkinson, D.P., and Zhang, J., Nano Energy 33, 363 (2017).CrossRefGoogle Scholar
Ye, Y.-S., Tseng, C.-Y., Shen, W.-C., Wang, J.-S., Chen, K.-J., Cheng, M.-Y., Rick, J., Huang, Y.-J., Chang, F.-C., Hwang, B.-J., Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Alonso, M.H., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X., Ruoff, R.S., Nguyen, S.T., Aksay, I.A., Prud'Homme, R.K., Brinson, L.C., Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H.B., Evmenenko, G., Nguyen, S.T., Ruoff, R.S., Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S., Stoller, M.D., Park, S., Zhu, Y., An, J., Ruoff, R.S., Liang, M., Zhi, L., Li, D., Muller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G., Fowler, J.D., Allen, M.J., Tung, V.C., Yang, Y., Kaner, R.B., Weiller, B.H., Schedin, F., Geim, A.K., Morozov, S. V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S., Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., Dai, H., Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y., Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.-Z., Koratkar, N., Zhang, K., Zhang, L.L., Zhao, X.S., Wu, J., Verdejo, R., Bernal, M.M., Romasanta, L.J., Lopez-Manchado, M.A., Kim, H., Abdala, A.A., Macosko, C.W., Plechkova, N. V., Seddon, K.R., Green, O., Grubjesic, S., Lee, S., Firestone, M.A., Dresselhaus, M.S., Thomas, I.L., Kreuer, K.D., Paddison, S.J., Spohr, E., Schuster, M., Lee, S.-Y., Yasuda, T., Watanabe, M., Susan, M.A.B.H., Kaneko, T., Noda, A., Watanabe, M., Ye, Y.-S., Cheng, M.-Y., Tseng, J.-Y., Liang, G.-W., Rick, J., Huang, Y.-J., Chang, F.-C., Hwang, B.-J., Lin, B., Cheng, S., Qiu, L., Yan, F., Shang, S., Lu, J., Lee, S.-Y., Ogawa, A., Kanno, M., Nakamoto, H., Yasuda, T., Watanabe, M., Pereira, F., Vallé, K., Belleville, P., Morin, A., Lambert, S., Sanchez, C., Yamaguchi, T., Zhou, H., Nakazawa, S., Hara, N., Chai, Z., Wang, C., Zhang, H., Doherty, C.M., Ladewig, B.P., Hill, A.J., Wang, H., Kannan, R., Kakade, B.A., Pillai, V.K., Kim, T., Lee, H., Kim, J., Suh, K.S., Zhou, X., Wu, T., Ding, K., Hu, B., Hou, M., Han, B., Salavagione, H.J., Martinez, G., Gomez, M.A., Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.T., Ruoff, R.S., Hummers, W.S., Offeman, R.E., Tseng, C.-Y., Ye, Y.-S., Joseph, J., Kao, K.-Y., Rick, J., Huang, S.-L., Hwang, B.-J., Ye, Y.-S., Huang, Y.-J., Cheng, C.-C., Chang, F.-C., Mistry, M.K., Subianto, S., Choudhury, N.R., Dutta, N.K., Fang, M., Wang, K., Lu, H., Yang, Y., Nutt, S., Sinani, V.A., Gheith, M.K., Yaroslavov, A.A., Rakhnyanskaya, A.A., Sun, K., Mamedov, A.A., Wicksted, J.P., Kotov, N.A., Subianto, S., Mistry, M.K., Choudhury, N.R., Dutta, N.K., Knott, R., Zhao, X., Zhang, Q., Chen, D., Lu, P., Wang, Y., Shi, Z., Fang, J., Xu, H., Ma, X., Yin, J., Sahoo, N.G., Rana, S., Cho, J.W., Li, L., and Chan, S.H., J. Mater. Chem. 21, 10448 (2011).Google Scholar
Yagci, Y. and Schnabel, W., 270, 38 (1999).Google Scholar
Mackanic, D.G., Michaels, W., Lee, M., Feng, D., Lopez, J., Qin, J., Cui, Y., and Bao, Z., Adv. Energy Mater. 8, 1 (2018).CrossRefGoogle Scholar
Dhatarwal, P. and Sengwa, R.J., Polym. Bull. 75, 5645 (2018).CrossRefGoogle Scholar
Hartwig, A. and Sebald, M., Eur. Polym. J. 39, 1975 (2003).CrossRefGoogle Scholar
Lützen, H., Gesing, T.M., Kim, B.K., and Hartwig, A., Polym. (United Kingdom) 53, 6089 (2012).CrossRefGoogle Scholar
Walker, C.N., Versek, C., Touminen, M., and Tew, G.N., ACS Macro Lett. 1, 737 (2012).CrossRefGoogle Scholar
Johan, M.R., Shy, O.H., Ibrahim, S., Mohd Yassin, S.M., and Hui, T.Y., Solid State Ionics 196, 41 (2011).CrossRefGoogle Scholar
12 Ping, J., Pan, H., Hou, P.P., Zhang, M.Y., Wang, X., Wang, C., Chen, J., Wu, D., Shen, Z., and Fan, X.H., ACS Appl. Mater. Interfaces 9, 6130 (2017).CrossRefGoogle Scholar
Daigle, J.C., Vijh, A., Hovington, P., Gagnon, C., Hamel-Pâquet, J., Verreault, S., Turcotte, N., Clément, D., Guerfi, A., and Zaghib, K., J. Power Sources 279, 372 (2015).CrossRefGoogle Scholar
Chen, F., Yang, D., Zha, W., Zhu, B., Zhang, Y., Li, J., Gu, Y., Shen, Q., Zhang, L., and Sadoway, D.R., Electrochim. Acta 258, 1106 (2017).CrossRefGoogle Scholar
Chinnam, P.R. and Wunder, S.L., J. Mater. Chem. A 1, 1731 (2013).CrossRefGoogle Scholar
Thomas, K.E., Sloop, S.E., Kerr, J.B., and Newman, J., J. Power Sources 89, 132 (2000).CrossRefGoogle Scholar
Fan, J. and Angell, C.A., Electrochim. Acta 40, 2397 (1995).CrossRefGoogle Scholar
Nakano, A., Okamoto, K., Kozawa, T., and Tagawa, S., Dig. Pap. - Microprocess. Nanotechnol. 2003 - 2003 Int. Microprocess. Nanotechnol. Conf. MNC 2003 120 (2003).Google Scholar
Singh, T.J. and Bhat, S. V., Bull. Mater. Sci. 26, 707 (2003).CrossRefGoogle Scholar
Noor, S.A.M., Ahmad, A., Talib, I.A., and Rahman, M.Y.A., Ionics (Kiel). 16, 161 (2010).CrossRefGoogle Scholar
Ngai, K.L., Eur. Phys. J. E 8, 225 (2002).10.1140/epje/i2001-10062-2CrossRefGoogle Scholar
Akbulut, O., Taniguchi, I., Kumar, S., Shao-Horn, Y., and Mayes, A.M., Electrochim. Acta 52, 1983 (2007).CrossRefGoogle Scholar
Bella, F., Ozzello, E.D., Bianco, S., and Bongiovanni, R., Chem. Eng. J. 225, 873 (2013).CrossRefGoogle Scholar
Silva, M.M., Barros, S.C., Smith, M.J., and MacCallum, J.R., Electrochim. Acta 49, 1887 (2004).CrossRefGoogle Scholar
Xue, Z., He, D., and Xie, X., J. Mater. Chem. A 3, 19218 (2015).CrossRefGoogle Scholar
Smart, M.C., Ratnakumar, B. V., Whitcanack, L.D., Chin, K.B., Surampudi, S., Gitzendanner, R., Puglia, F., and Byers, J., IEEE Aerosp. Electron. Syst. Mag. 19, 18 (2004).CrossRefGoogle Scholar
Long, L., Wang, S., Xiao, M., and Meng, Y., J. Mater. Chem. A 4, 10038 (2016).CrossRefGoogle Scholar