Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T04:14:45.390Z Has data issue: false hasContentIssue false

Small Molecule with Extended Alkyl Side Substituents for Organic Solar Cells

Published online by Cambridge University Press:  27 December 2016

Chenyu Zheng*
Affiliation:
Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, U.S.A. School of Chemistry and Materials Science (SCMS), Rochester Institute of Technology, Rochester, NY 14623, U.S.A. NanoPower Research Laboratory (NPRL), Rochester Institute of Technology, Rochester, NY 14623, U.S.A.
Ishita Jalan
Affiliation:
School of Chemistry and Materials Science (SCMS), Rochester Institute of Technology, Rochester, NY 14623, U.S.A.
Jeremy A. Cody
Affiliation:
School of Chemistry and Materials Science (SCMS), Rochester Institute of Technology, Rochester, NY 14623, U.S.A.
Christopher J. Collison
Affiliation:
Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, U.S.A. School of Chemistry and Materials Science (SCMS), Rochester Institute of Technology, Rochester, NY 14623, U.S.A. NanoPower Research Laboratory (NPRL), Rochester Institute of Technology, Rochester, NY 14623, U.S.A.
*
Get access

Abstract

In this work, we have investigated two aniline based squaraine molecules, DBSQ(OH)2 and DHSQ(OH)2, for their potential application in organic photovoltaics. These two squaraine molecules are only different in side chain length (i.e. butyl vs. hexyl). Yet, their solar cell properties are drastically different (PCE = 3.6% vs. 1.9%). We have further investigated the reason behind the superior performance of DBSQ(OH)2 in absorbance spectra, hole mobility characterization and transmission electron microscopy. The results show that DBSQ(OH)2 has a higher hole mobility (5.1×10-4 cm2/V•s vs. 1.4×10-4 cm2/V•s) and is able to mix well with the fullerene acceptor compared to DHSQ(OH)2. Our work shows clearly that the long solubilizing alkyl side chain might be detrimental for OPV performance and that shorter side chains with enough solubility have great value when designing small molecules.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Yang, D., Jiao, Y., Yang, L., Chen, Y., Mizoi, S., Huang, Y., Pu, X., Lu, Z., Sasabe, H. and Kido, J., J. Mater. Chem. A, 2015, 3, 1770417712.Google Scholar
Yang, D., Yang, Q., Yang, L., Luo, Q., Huang, Y., Lu, Z. and Zhao, S., Chem. Commun., 2013, 49, 1046510467.Google Scholar
Wei, G., Wang, S., Sun, K., Thompson, M. E. and Forrest, S. R., Adv. Energy Mater., 2011, 1, 184187.Google Scholar
Chen, G., Sasabe, H., Wang, Z., Wang, X.-F., Hong, Z., Yang, Y. and Kido, J., Adv. Mater., 2012, 24, 27682773.Google Scholar
Zheng, C., Penmetcha, A. R., Cona, B., Spencer, S. D., Zhu, B., Heaphy, P., Cody, J. A. and Collison, C. J., Langmuir, 2015, 31, 77177726.Google Scholar
Yang, D., Jiao, Y., Huang, Y., Zhuang, T., Yang, L., Lu, Z., Pu, X., Sasabe, H. and Kido, J., Org. Electron., 2016, 32, 179186.Google Scholar
Yang, D., Zhu, Y., Jiao, Y., Yang, L., Yang, Q., Luo, Q., Pu, X., Huang, Y., Zhao, S. and Lu, Z., RSC Adv., 2015, 5, 2072420733.Google Scholar
Liu, X., Sun, Y., Hsu, B. B. Y., Lorbach, A., Qi, L., Heeger, A. J. and Bazan, G. C., J. Am. Chem. Soc., 2014, 136, 56975708.CrossRefGoogle Scholar
Liu, X., Hsu, B. B. Y., Sun, Y., Mai, C.-K., Heeger, A. J. and Bazan, G. C., J. Am. Chem. Soc., 2014, 136, 1614416147.Google Scholar
Gadisa, A., Oosterbaan, W. D., Vandewal, K., Bolsée, J.-C., Bertho, S., D’Haen, J., Lutsen, L., Vanderzande, D. and Manca, J. V., Adv. Funct. Mater., 2009, 19, 33003306.Google Scholar
Deing, K. C., Mayerhoffer, U., Wurthner, F. and Meerholz, K., Phys. Chem. Chem. Phys., 2012, 14, 83288334.Google Scholar
Hestand, N. J., Zheng, C., Penmetcha, A. R., Cona, B., Cody, J. A., Spano, F. C. and Collison, C. J., J. Phys. Chem. C, 2015, 119, 1896418974.Google Scholar
Law, K. Y., J. Phys. Chem., 1989, 93, 59255930.Google Scholar
Law, K.-Y., J. Phys. Chem., 1995, 99, 98189824.Google Scholar
Chen, G., Sasabe, H., Sasaki, Y., Katagiri, H., Wang, X.-F., Sano, T., Hong, Z., Yang, Y. and Kido, J., Chem. Mater., 2014, 26, 13561364.Google Scholar
Zheng, C., Bleier, D., Jalan, I., Pristash, S., Penmetcha, A. R., Hestand, N. J., Spano, F. C., Pierce, M. S., Cody, J. A. and Collison, C. J., Sol. Energy Mater. Sol. Cells, 2016, 157, 366376.CrossRefGoogle Scholar
Blom, P. W. M., de Jong, M. J. M. and Vleggaar, J. J. M., Appl. Phys. Lett., 1996, 68, 3308.CrossRefGoogle Scholar
Proctor, C. M., Love, J. A. and Nguyen, T.-Q., Adv. Mater., 2014, 26, 59575961.Google Scholar
Spencer, S. D., Bougher, C., Heaphy, P. J., Murcia, V. M., Gallivan, C. P., Monfette, A., Andersen, J. D., Cody, J. A., Conrad, B. R. and Collison, C. J., Sol. Energy Mater. Sol. Cells, 2013, 112, 202208.Google Scholar
Mihailetchi, V. d., van Duren, J. k. j., Blom, P. w. m., Hummelen, J. c., Janssen, R. a. j., Kroon, J. m., Rispens, M. t., Verhees, W. j. h. and Wienk, M. m., Adv. Funct. Mater., 2003, 13, 4346.Google Scholar
Gadisa, A., Mammo, W., Andersson, L. M., Admassie, S., Zhang, F., Andersson, M. R. and Inganäs, O., Adv. Funct. Mater., 2007, 17, 38363842.Google Scholar
Chen, G., Sasabe, H., Wang, Z., Wang, X., Hong, Z., Kido, J. and Yang, Y., Phys. Chem. Chem. Phys., 2012, 14, 1466114666.Google Scholar