Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T00:15:41.196Z Has data issue: false hasContentIssue false

A Review of Advances in Thermophotovoltaics for Power Generation and Waste Heat Harvesting

Published online by Cambridge University Press:  02 September 2019

Abigail Licht
Affiliation:
The Renewable Energy and Applied Photonics Laboratories, Electrical and Computer Engineering Department, Tufts University, Medford, MA 02155 USA
Nicole Pfiester
Affiliation:
The Renewable Energy and Applied Photonics Laboratories, Electrical and Computer Engineering Department, Tufts University, Medford, MA 02155 USA
Dante DeMeo
Affiliation:
The Renewable Energy and Applied Photonics Laboratories, Electrical and Computer Engineering Department, Tufts University, Medford, MA 02155 USA
John Chivers
Affiliation:
The Renewable Energy and Applied Photonics Laboratories, Electrical and Computer Engineering Department, Tufts University, Medford, MA 02155 USA
Thomas E. Vandervelde*
Affiliation:
The Renewable Energy and Applied Photonics Laboratories, Electrical and Computer Engineering Department, Tufts University, Medford, MA 02155 USA
*
Get access

Abstract

The vast majority of power generation in the United States today is produced through the same processes as it was in the late-1800s: heat is applied to water to generate steam, which turns a turbine, which turns a generator, generating electrical power. Researchers today are developing solid-state power generation processes that are more befitting the 21st-century. Thermophotovoltaic (TPV) cells directly convert radiated thermal energy into electrical power, through a process similar to how traditional photovoltaics work. These TPV generators, however, include additional system components that solar cells do not incorporate. These components, selective-emitters and filters, shape the way the radiated heat is transferred into the TPV cell for conversion and are critical for its efficiency. Here, we present a review of work performed to improve the components in these systems. These improvements will help enable TPV generators to be used with nearly any thermal source for both primary power generation and waste heat harvesting.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fraas, L.M. and Strauch, J., in TPV-9 (Valencia Spain, 2010), pp. 27.Google Scholar
Bernd, B., Wilhelm, D., and Reto, H., Appl. Energy 105, 430 (2013).Google Scholar
Yang, W.M., Chou, S.K., and Li, J., Appl. Therm. Eng. 29, 3144 (2009).CrossRefGoogle Scholar
Chou, S.K., Yang, W.M., Chua, K.J., Li, J., and Zhang, K.L., 88, 1 (2011).Google Scholar
Yang, W.M., Chou, S.K., Shu, C., Li, Z.W., and Xue, H., Appl. Phys. Lett. 84, 3864 (2004).CrossRefGoogle Scholar
Horne, W.E., Morgan, M.D., Sundaram, V.S., and Butcher, T., AIP Conf. Proc. 653, 91 (2003).CrossRefGoogle Scholar
Nielsen, O.M., Arana, L.R., Baertsch, C.D., Jensen, K.F., and Schmidt, M. a., TRANSDUCERS ’03. 12th Int. Conf. Solid-State Sensors, Actuators Microsystems. Dig. Tech. Pap. (Cat. No.03TH8664) 1, 714 (2003).Google Scholar
Schock, A., Mukunda, M., Or, C., and Summers, G., Acta Astronaut. 37, 21 (1995).CrossRefGoogle Scholar
Teofilo, V.L., Choong, P., Chang, J., Tseng, Y.-L., and Ermer, S., J. Phys. Chem. C 112, 7841 (2008).CrossRefGoogle Scholar
Thekdi, A. and Nimbalkar, S.U., (2015).Google Scholar
Wernsman, B., Siergiej, R.R., Link, S.D., Mahorter, R.G., Palmisiano, M.N., Wehrer, R.J., Schultz, R.W., Schmuck, G.P., Messham, R.L., Murray, S., Murray, C.S., Newman, F., Taylor, D., DePoy, D.M., and Rahmlow, T., Greater than 20% Radiant Heat Conversion Efficiency of a Thermophotovoltaic Radiator/Module System Using Reflective Spectral Control (2004), pp. 512515.Google Scholar
Kittl, E., in 10th IEEE Photovolt. Spec. Conf. (1974), pp. 103106.Google Scholar
Datas, A., Sol. Energy Mater. Sol. Cells 134, 275 (2015).CrossRefGoogle Scholar
Wah, J.Y., PhD Thesis, University of Essex, 2003.Google Scholar
Dashiell, M.W., Beausang, J.F., Ehsani, H., Nichols, G.J., Depoy, D.M., Danielson, L.R., Talamo, P., Rahner, K.D., Brown, E.J., Burger, S.R., Fourspring, P.M., Topper, W.F. Jr., Baldasaro, P.F., Wang, C.A., Huang, R.K., Connors, M.K., Turner, G.W., Shellenbarger, Z.A., Taylor, G., Li, J., Martinelli, R., Donetski, D., Anikeev, S., Belenky, G.L., and Luryi, S., IEEE Trans. Electron Devices 53, 2879 (2006).CrossRefGoogle Scholar
Mohseni, H., Litvinov, V.I., and Razeghi, M., Phys. Rev. B (Condensed Matter) 58, (1998).CrossRefGoogle Scholar
Kolm, H., Solar-Battery Power Source Quarterly Progress Report Solid State Research, Group 35 (Lexington, MA: MIT Lincoln Laboratory, 1956).Google Scholar
Bitnar, B., Semicond Sci Technol 18, 221 (2003).CrossRefGoogle Scholar
Bauer, T., Thermophotovoltaics: Basic Principles and Critical Aspects of System Design (Springer, 2011).CrossRefGoogle Scholar
Green, M.A., Emery, K., Hishikawa, Y., Warta, W., and Dunlop, E.D., Prog. Photovoltaics Res. Appl. 20, 12 (2012).CrossRefGoogle Scholar
Downs, C. and Vandervelde, T.E., Progress in Infrared Photodetectors since 2000 (2013).CrossRefGoogle ScholarPubMed
Fraas, Lewis, Avery, J., Gee, J., and Emery, K., in IEEE PV Spec. Conf. (1990), p. 190.Google Scholar
Fraas, L.M., Huang, H.X., Ye, S.Z., Hui, S., J, A., and R, B., in 3rd REL Conf. Thermophotovoltaic Gener. Electr. (1997), pp. 3340.CrossRefGoogle Scholar
Astakhova, a. P., Zhurtanov, B.E., Imenkov, a. N., Mikhailova, M.P., Sipovskaya, M. a., Stoyanov, N.D., and Yakovlev, Y.P., Tech. Phys. Lett. 33, 11 (2007).CrossRefGoogle Scholar
Wehrer, R.J., AIP Conf. Proc. 738, 445 (2004).CrossRefGoogle Scholar
Kunitsyna, E.V., Andreev, I. a., Sherstnev, V.V., L’vova, T.V., Mikhailova, M.P., Yakovlev, Y.P., Ahmetoglu (Afrailov), M., Kaynak, G., and Gurler, O., Opt. Mater. (Amst). 32, 1573 (2010).CrossRefGoogle Scholar
Gevorkyan, V.A., Aroutiounian, V.M., Gambaryan, K.M., Arakelyan, A.H., Andreev, I. a., Golubev, L. V., Yakovlev, Y.P., and Wanlass, M.W., AIP Conf. Proc. 890, 165 (2007).CrossRefGoogle Scholar
V Andreev, M., Khvostikov, O.A., Khvostikova, V P, and V Oliva, E., in Thermophotovoltaic Gener. Electr. 5th Conf. Thermophotovoltaic Gener. Electr. (AIP Conf. Proc. 653) (2003), p. pp 383–91.CrossRefGoogle Scholar
Krier, A., Yin, M., J, M.R.., and Krier, S.E., J. Electron. Mater. 45, 2726 (2016).CrossRefGoogle Scholar
Mauk, M., Mid-Infrared Semicond. Optoelectron. 118, 673 (2006).Google Scholar
Stevens, M., Licht, A., Pfiester, N., Carlson, E., Grossklaus, K., and Vandervelde, T.E., 2017 IEEE 44th Photovolt. Spec. Conf. (2017).Google Scholar
Zayan, A., Stevens, M., and Vandervelde, T.E., Conf. Rec. IEEE Photovolt. Spec. Conf. ember, 2839 (2016).Google Scholar
Zayan, A., Downs, C., and Vandervelde, T.E., 29th Eur. Photovolt. Sol. Energy Conf. Exhib. (EU PVSEC 2014) (2015).Google Scholar
Downs, C. and Vandervelde, T.E., Conf. Rec. IEEE Photovolt. Spec. Conf. 000462 (2011).Google Scholar
Karlina, L.B., Vlasov, A.S., Kulagina, M.M., and Timoshina, N.K., 40, 346 (2005).Google Scholar
Bett, A.W. and Sulima, O.V., Semicond. Sci. Technol. 18, S184 (2003).CrossRefGoogle Scholar
Hudait, M.K., Brenner, M., and Ringel, S. a., Solid. State. Electron. 53, 102 (2009).CrossRefGoogle Scholar
Dutta, P.S., Borrego, J.M., Ehsani, H., Rajagopalan, G., Bhat, I.B., Gutmann, R.J., Nichols, G., and Baldasaro, P.F., AIP Conf. Proc. 653, 392 (2003).CrossRefGoogle Scholar
Choi, H.K., Wang, C.A., Turner, G.W., Manfra, M.J., Spears, D.L., Charache, G.W., Danielson, L.R., Choi, H.K., Wang, C.A., Turner, G.W., Manfra, M.J., and Spears, D.L., 3758, 1 (2003).Google Scholar
Mauk, M.G., V Sulima, O., Cox, J.A., and Mueller, R.L., in 3rd World Conf. Photovolloic Energy Convers . (2003), pp. 224227.Google Scholar
Cheetham, K.J., Carrington, P.J., Cook, N.B., and Krier, A., Sol. Energy Mater. Sol. Cells 95, 534 (2011).CrossRefGoogle Scholar
Demeo, D., Shemelya, C., Downs, C., Licht, A., Magden, E.S., Rotter, T., Dhital, C., Wilson, S., Balakrishnan, G., and Vandervelde, T.E., J. Electron. Mater. 43, 902 (2014).CrossRefGoogle Scholar
Rehm, R., Masur, M., Schmitz, J., Daumer, V., Niemasz, J., Vandervelde, T., DeMeo, D., Luppold, W., Wauro, M., Wörl, A., Rutz, F., Scheibner, R., Ziegler, J., and Walther, M., Infrared Phys. Technol. 59, 6 (2013).CrossRefGoogle Scholar
Shao, J., Vandervelde, T.E., Barve, A., Jang, W.-Y., Stintz, A., and Krishna, S., J. Vac. Sci. Technol. BNanotechnology Microelectron. 29, (2011).Google Scholar
Shao, J., Vandervelde, T.E., Barve, A., Stintz, A., and Krishna, S., Appl. Phys. Lett. 101, (2012).Google Scholar
Andrews, J.R., Restaino, S.R., Teare, S.W., Sharma, Y.D., Jang, W.-Y., Vandervelde, T.E., Brown, J.S., Reisinger, A., Sundaram, M., Krishna, S., and Lester, L., IEEE Trans. Electron Devices 58, 2022 (2011).CrossRefGoogle Scholar
Vines, P., Tan, C.H., David, J.P.R., Attaluri, R.S., Vandervelde, T.E., and Krishna, S., IEEE J. Quantum Electron. 47, 607 (2011).CrossRefGoogle Scholar
Barve, A.V., Sharma, Y.D., Montoya, J., Shao, J., Vandervelde, T., Rotter, T., and Krishna, S., Int. J. High Speed Electron. Syst. 20, 549 (2011).CrossRefGoogle Scholar
Barve, A., Shao, J., Sharma, Y.D., Vandervelde, T.E., Sankalp, K., Lee, S.J., Noh, S.K., and Krishna, S., IEEE J. Quantum Electron. 46, 1105 (2010).CrossRefGoogle Scholar
Vandervelde, T.E. and Krishna, S., J. Nanosci. Nanotechnol. 10, 1450 (2010).CrossRefGoogle Scholar
Vandervelde, T.E., Sun, K., Merz, J.L., Kubis, A., Hull, R., Pernell, T.L., and Bean, J.C., J. Appl. Phys. 99, (2006).CrossRefGoogle Scholar
Kubis, A.J., Vandervelde, T.E., Bean, J.C., Dunn, D.N., and Hull, R., Mater. Res. Soc. Symp. Proc. 818, 411 (2004).CrossRefGoogle Scholar
Stollwerck, G., V Sulima, O., and Bett, A.W., 47, 448 (2000).Google Scholar
Dutta, P.S. and Kumar, H.L.B., J. Appl. Phys. 81, 5821 (1997).CrossRefGoogle Scholar
I.P.-T. Institute, (n.d.).Google Scholar
V Sulima, O. and Bett, A.W., 66, (2001).CrossRefGoogle Scholar
Longenbach, K.F., Wang, W.I., Longenbach, K.F., and Wang, W.I., 59, (1991).CrossRefGoogle Scholar
Licht, A.S., Shemelya, C., DeMeo, D.F., Carlson, E.S., and Vandervelde, T.E., in 2017 IEEE 60th Int. Midwest Symp. Circuits Syst. (IEEE, 2017), pp. 843846.CrossRefGoogle Scholar
Polyakov, A.Y., Stam, M., Wilsonz, A.G.M.G., Rai, Q.F., Hillard, R.J., and Polyakov, A.Y., 1316, (1992).CrossRefGoogle Scholar
Augustin, M., Markvart, T., and Castaner, L., Practical Handbook of Photovoltaics, 2nd Editio (Elsevier, 2012).Google Scholar
Shemeya, C. and Vandervelde, T.E., J. Electron. Mater. 41, 928 (2012).CrossRefGoogle Scholar
Shemelya, C., Demeo, D.F., and Vandervelde, T.E., Appl. Phys. Lett. 104, (2014).Google Scholar
Shemelya, C.M., ProQuest Diss. Theses Glob. (2013).Google Scholar
Demeo, D.F., Pfeister, N.A., Shemelya, C.M., and Vandervelde, T., Proc. SPIE - Int. Soc. Opt. Eng. 8982, (2014).Google Scholar
Schirm, K.M., Soukiassian, P., Mangat, P.S., and Soonckindt, L., Phys. Rev. B 49, 5490 (1994).CrossRefGoogle Scholar
Spicer, W.E., Lindau, I., Skeath, P., Su, C.Y., and Chye, P., Phys. Rev. Lett. 44, (1980).CrossRefGoogle Scholar
Lu, Z.M., Mao, D., Soonckindt, L., and Kahn, A., J. Vac. Sci. Technol. A 8, 1988 (1990).CrossRefGoogle Scholar
Rahimi, N., Aragon, A.A., Romero, O.S., Shima, D.M., Rotter, T.J., Sayan, D., Lester, G.B.F., Rahimi, N., Aragon, A.A., Romero, O.S., Shima, D.M., Rotter, T.J., Mukherjee, S.D., Balakrishnan, G., and Lester, L.F., 108, 1 (2014).Google Scholar
Robinson, J.A. and Mohney, S.E., Solid. State. Electron. 48, 1667 (2004).CrossRefGoogle Scholar
Subekti, A., Chin, V.W.L., Tansley, T.L., and June, I.I., 39, 329 (1996).Google Scholar
Heinz, C., Int. J. Electron. 54, 247 (1983).CrossRefGoogle Scholar
Li, X. and Milnes, A.G., 143, 1014 (1996).CrossRefGoogle Scholar
Rolland, M., Gaillard, S., Villemain, E., Rigaud, D., Valenza, M., Rolland, M., Gaillard, S., Villemain, E., Rigaud, D., Low, M.V., and Id, H.A.L., 3, 1825 (1993).Google Scholar
Villemain, E., Gaillard, S., Rolland, M., and A. Joullie, 20, 162 (1993).Google Scholar
Vogt, A., Hartnagel, H., Miehe, G., Fuess, H., and Schmitz, J., J. Vac. Sci. Technol. B 14, 3514 (1996).CrossRefGoogle Scholar
Vogt, A., Simon, A., and Hartnagel, H.L., J. APplieds Phys. 83, (1998).Google Scholar
Sigmund, J., Saglam, M., Vogt, A., Hartnagel, H.L., and Buschmann, V., 228, 625 (2001).Google Scholar
Varblianska, K., Tzenev, K., and Kotsinov, T., Phys. STATUS SOLIDI A-APPLIED Res. 163, 387 (1997).3.0.CO;2-6>CrossRefGoogle Scholar
Piotrowska, A., Piotrowski, T., Kasjaniuk, S., Guziewicz, M., Gierlotka, S., Lin, X.W., Division, M.S., and Kwiatkowski, S., 87, 419 (1995).Google Scholar
Priyabadini, S.A.A.B.K.K.S. and Amann, M., 259 (2009).Google Scholar
Lauer, C., Dier, O., and Amann, M., (2006).Google Scholar
Huang, R.K., Wang, C.A., Harris, C.T., Connors, M.K., and Shiau, D.A., 33, (2004).Google Scholar
Pfiester, N.A. and Vandervelde, T.E., Phys. Status Solidi Appl. Mater. Sci. 214, (2017).Google Scholar
Shemelya, C., Demeo, D., Latham, N.P., Wu, X., Bingham, C., Padilla, W., and Vandervelde, T.E., Appl. Phys. Lett. 104, (2014).Google Scholar