Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T01:07:27.877Z Has data issue: false hasContentIssue false

Rectifying Behavior and Light Emission from Nickel Oxide MIS Structures

Published online by Cambridge University Press:  09 September 2016

Kamruzzaman Khan*
Affiliation:
Department of Electrical Engineering and Computer Science, University of Toledo, Toledo, OH 43606, U.S.A.
Srikanth Itapu
Affiliation:
Department of Electrical Engineering and Computer Science, University of Toledo, Toledo, OH 43606, U.S.A.
Daniel G. Georgiev
Affiliation:
Department of Electrical Engineering and Computer Science, University of Toledo, Toledo, OH 43606, U.S.A.
*
Get access

Abstract

We have demonstrated the NiO/ZnO based rectifying diode for LED application for substituting GaN for optoelectronics applications. We have systematically studied the current-voltage (I-V) characteristics of NiO based Metal-Insulator-Semiconductor (MIS) devices under forward and reverse bias for its use in LED applications. The results obtained show that the current increases exponentially with the voltage after a critical turn-on-voltage. The mechanism of carrier transport responsible for the rectifying behavior of the MIS structure as well as the light emission is discussed in relation to the experimental results.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Choi, Y. S., Kang, J. W., Hwang, D. K., and Park, S. J., “Recent advances in ZnO-based light-emitting diodes,” IEEE Trans. Electron Devices, vol. 57, no. 1, pp. 2641, 2010.Google Scholar
Janotti, A. and Van de Walle, C. G., “Fundamentals of zinc oxide as a semiconductor,” Reports Prog. Phys., vol. 72, p. 126501, 2009.CrossRefGoogle Scholar
Alivov, Y. I., Van Nostrand, J. E., Look, D. C., Chukichev, M. V., and Ataev, B. M., “Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes,” Appl. Phys. Lett., 2003.Google Scholar
Zhao, Y., Wang, H., Wu, C., Li, W., Gao, F., Wu, G., Zhang, B., and Du, G., “Study on the electroluminescence properties of diodes based on n-ZnO/p-NiO/p-Si heterojunction,” Opt. Commun., 2015.Google Scholar
Tyagi, M., Tomar, M., and Gupta, V., “Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode,” Mater. Res. Bull., vol. 66, pp. 123131, 2015.Google Scholar
Tsai, S. Y., Hon, M. H., and Lu, Y. M., “Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors,” Solid. State. Electron., 2011.CrossRefGoogle Scholar
Long, H., Fang, G., Huang, H., Mo, X., Xia, W., Dong, B., Meng, X., and Zhao, X., “Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes,” Appl. Phys. Lett., vol. 95, no. 1, pp. 14, 2009.CrossRefGoogle Scholar
Chen, P., Ma, X., and Yang, D., “Fairly pure ultraviolet electroluminescence from p-Si-based SiOx/ZnO/SiOx double-barrier device,” Opt. Commun., vol. 283, no. 7, pp. 13591362, 2010.CrossRefGoogle Scholar
Young, S. J., Ji, L. W., Chang, S. J., Liang, S. H., Lam, K. T., Fang, T. H., Chen, K. J., Du, X. L., and Xue, Q. K., “ZnO-based MIS photodetectors (DOI:10.1016/j.sna.2007.06.006),” Sensors Actuators, A Phys., vol. 141, no. 1, pp. 225229, 2008.CrossRefGoogle ScholarPubMed
Huang, H., Fang, G., Mo, X., Long, H., Yuan, L., Dong, B., Meng, X., and Zhao, X., “ZnO-based fairly pure ultraviolet light-emitting diodes with a low operation voltage,” IEEE Electron Device Lett., vol. 30, no. 10, pp. 10631065, 2009.Google Scholar
Yamamoto, T. and Morimoto, M., “Thin-MIS-structure Si negative-resistance diode,” Appl. Phys. Lett., vol. 20, no. 8, pp. 269270, 1972.CrossRefGoogle Scholar
Chen, P., Ma, X., Li, D., Zhang, Y., and Yang, D., “Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: dependence on carrier transport.,” Opt. Express, vol. 17, no. 6, pp. 47124717, 2009.Google Scholar
Hotový, I., Búc, D., Haščík, Š., and Nennewitz, O., “Characterization of NiO thin films deposited by reactive sputtering,” Vacuum. 1998.CrossRefGoogle Scholar
Chen, H.-L., Lu, Y.-M., and Hwang, W.-S., “Thickness dependence of electrical and optical properties of sputtered Nickel oxide films,” Thin Solid Films. 2006.Google Scholar
Gupta, R. K., Ghosh, K., and Kahol, P. K., “Fabrication and characterization of NiO/ZnO p–n junctions by pulsed laser deposition,” Physica E: Low-dimensional Systems and Nanostructures. 2009.Google Scholar
Abbasi, M. A., Ibupoto, Z. H., Hussain, M., Nur, O., and Willander, M., “The fabrication of white light-emitting diodes using the n-ZnO / NiO / p-GaN heterojunction with enhanced luminescence,” Nanoscale Res. Lett., 2013.Google Scholar
Park, N., Sun, K., Sun, Z., Jing, Y., and Wang, D., “High efficiency NiO/ZnO heterojunction UV photodiode by sol-gel processing,” J. Mater. Chem. C, vol. 1, pp. 73337338, 2013.CrossRefGoogle Scholar
Aguirre, B., Vemuri, R. S., Zubia, D., Engelhard, M. H., Shutthananadan, V., Bharathi, K. K., and Ramana, C. V., “Growth, microstructure and electrical properties of sputter-deposited hafnium oxide (HfO2) thin films grown using a HfO2 ceramic target,” Appl. Surf. Sci., vol. 257, no. 6, pp. 21972202, 2011.Google Scholar