Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T13:09:03.015Z Has data issue: false hasContentIssue false

Pulsed Nd:YAG laser assisted fabrication of graphene nanosheets in water

Published online by Cambridge University Press:  21 March 2018

Makhangela C. Mbambo*
Affiliation:
UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box392, Pretoria, South Africa Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West7129, PO Box722, Somerset West, Western Cape Province, South Africa Department of Physics, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida1710, Johannesburg, South Africa
Saleh Khamlich
Affiliation:
UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box392, Pretoria, South Africa Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West7129, PO Box722, Somerset West, Western Cape Province, South Africa
Touria Khamliche
Affiliation:
UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box392, Pretoria, South Africa Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West7129, PO Box722, Somerset West, Western Cape Province, South Africa
Bakang M. Mothudi
Affiliation:
Department of Physics, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida1710, Johannesburg, South Africa
Malik Maaza
Affiliation:
UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box392, Pretoria, South Africa Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West7129, PO Box722, Somerset West, Western Cape Province, South Africa
*
Get access

Abstract

Graphene nanosheets were prepared by pulsed Nd:YAG laser ablation of graphite target in H2O under ambient conditions. The synthesized graphene nanosheets were characterized by high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Raman spectroscopy and Selected Area Electron Diffraction (SAED). The obtained structural and morphological analysis confirmed that the graphene nanosheets could be formed in an aqueous medium via one step method where a nanosecond pulsed near-infrared (NIR) laser (λ = 1064 nm) is used to ablate the surface of a pure graphite target. Compared to other used chemical methods to synthesis graphene nanosheets, laser ablation is an easy, versatile, environmental friendly and rapidly growing method for the synthesis of nanostructured materials such as graphene nanosheets. This technique showed normal operation in liquid medium (i.e. water or organic) under ambient conditions. Our study confirmed the great potential of laser ablation in liquid method for the fabrication of graphene nanosheets based nanofluids wich has a potential applicatiuon as a heat transfer fluid.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mtshali, C., Hamidi, D., Kerdja, T, Bassuah, P.B., Haneda, H., and Maaza, M., Opt. Commun. 285, 3272 (2012).CrossRefGoogle Scholar
Maaza, M., Mhlungu, M., Ndwandwe, M.O., Cingo, N., Beye, A.C., Govindaraj, A., and Rao, C.N.R., Int. J. of Nanotechnology, 4, 638 (2007).CrossRefGoogle Scholar
Thema, F.T., Beukes, P., Ngom, B.D., Manikandan, E., and Maaza, M., J. Alloys & Compounds, 648, 326 (2015).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. and Firsov, A. A., Science 306, 666 (2004).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M., Grigorieva, I., Dubonos, S. and Firsov, A. A., Nature 438, 197 (2005).CrossRefGoogle Scholar
Zhang, Y., Tan, Y.W., Stormer, H.L. and Kim, P., Nature, 438, 201 (2005.CrossRefGoogle Scholar
Mortazavi, S.Z., Parvin, P. and Reyhani, A., Laser Phys. Lett. 9, 547 (2012).CrossRefGoogle Scholar
Luo, Z., Vora, P. M., Mele, E. J., Johnson, A. C. and Kikkawa, J. M., Appl. Phys. Lett. 94, 111909 (2009).CrossRefGoogle Scholar
Wu, J. B., Agrawal, M., Becerril, H. A., Bao, Z., Liu, Z., Chen, Y. and Peumans, P., ACS Nano 4, 43 (2009).CrossRefGoogle Scholar
Park, H., Rowehl, J. A., Kim, K. K., Bulovic, V. and Kong, J., Nanotechnology 21, 505204 (2010).CrossRefGoogle Scholar
Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, F, L., Nature 474, 64 ( 2011).CrossRefGoogle Scholar
Liang, J., Huang, Y., Oh, J., Kozlov, M., Sui, D., Fang, S., Baughman, R. H., Ma, Y. and Chen, Y., Adv. Funct. Mater. 21, 3778 (2011).CrossRefGoogle Scholar
Geim, A.K. and Novoselov, K.S, Nat. Mater. 6, 183 (2007).CrossRefGoogle Scholar
Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Zhang, Y, and Dubonos, SV, Science 306, 666 (2004).CrossRefGoogle Scholar
Camara, N., Rius, G., Huntzinger, J.R., Tiberj, A., Mestres, N., Godignon, P. and Camassel, J, Appl. Phys. Lett. 93, 123503 (2008).CrossRefGoogle Scholar
Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S, Nature, 442, 282 (2006).CrossRefGoogle Scholar
Tong, Y, Bohm, S., and Song, M., J Nanomed Nanotechnol. 1, 1003 (2013).Google Scholar
Boyd, D.A., Lin, W.H., Hsu, C.C., Teague, M.L., Chen, C.C., Lo, Y.Y., Chan, W.Y., Su, W.B., Cheng, T.C., Chang, C.S., and Wu, C.I, Nat. Commun. 6, 6620 (2015).CrossRefGoogle Scholar
Jiao, L. Y., Zhang, L., Wang, X. R., Diankov, G., and Dai, H. J., Nature 458, 877 (2009).CrossRefGoogle Scholar
Wu, Z.S., Ren, W., Gao, L., Liu, B., Zhao, J., and Cheng, H.M., Nano Res. 3, 16 (2010).CrossRefGoogle Scholar
L Guo, H., Wang, X. F., Qian, Q.Y., Wang, F. B., and, Xia, X. H., ACS Nano 3, 2653 (2009).CrossRefGoogle Scholar
Mortazavi, S. Z., Parvin, P. and Reyhani, A., Laser Phys. Lett. 9, 547 (2012).CrossRefGoogle Scholar
Kim, C. D., Min, B. K. and Jung, W.S., Carbon 47, 1610 (2009).CrossRefGoogle Scholar
Chakrabarti, A., Lu, J., Skrabutenas, J.C., Xu, T., Xiao, Z., Maguire, J. A., and Hosmane, N. S. J., Mater. Chem 21, 9491 (2011).CrossRefGoogle Scholar
Maiman, T. M, Nature 187, 493 (1960).CrossRefGoogle Scholar
Zeng, H., Du, X. W., Singh, S. C., Kulinich, S. A., Yang, S., He, J., and Cai, W., Adv. Funct. Mater. 22, 1333 (2012).CrossRefGoogle Scholar
Mortazavi, S. Z., Parvin, P., and Reyhani, A., Laser Phys. Lett. 9(7), 547 (2012).CrossRefGoogle Scholar
Jeschke, H. O., Garcia, M. E., and Bennemann, K. H., Phys. Rev. Lett. 87, 015003 (2001).CrossRefGoogle Scholar
Miyamoto, Y., Zhang, H., and Tom ´ anek, D., Phys. Rev. Lett. 104, 208302 (2010).CrossRefGoogle Scholar
Compagnini, G., Russo, P., Tomarchio, F., Puglisi, O., D’Urso, L., and Scalese, S., Nanotechnology 23, 505601 (2012).CrossRefGoogle Scholar
Chicbkov, B. N., Momma, C., Nolte, S., Von Alvensleben, F., and Tiinnermann, A., Appl. Phys. A, 63, 109 (1996).CrossRefGoogle Scholar
Jiang, L., and Tsai, H. L., J. Appl. Phys. 100, 023116 (2006).CrossRefGoogle Scholar
Amendola, V., and Meneghetti, M., Phys. Chem. Chem. Phys. 11, 3805 (2009).CrossRefGoogle Scholar
Russo, P., Hu, A., Compagnini, G., Duleyd, W.W., and Zhou, N. Y., Nanoscale 6, 2381 (2014).CrossRefGoogle Scholar
Gao, D., Si, M., Li, J., Zhang, J., Zhang, Z., Yang, Z., and Xue, D., Nanoscale Res. Lett. 8, 129 (2013).CrossRefGoogle Scholar
Bhandari, S., Deepa, M., Joshi, A. G., Saxena, A. P., and Srivastava, A. K., Nanoscale Res. Lett. 6, 424 (2011).CrossRefGoogle Scholar
Stankovich, S., Dikin, D. A., Dommett, G. H., Kohlhaas, K. M., Zimney, E. J., Stach, E. A., Piner, R. D., Nguyen, S. T., and Ruoff, R. S., Nature 442, 282 (2006).CrossRefGoogle Scholar
Sarkar, A. K., Saha, S., Ganguly, S., Banerjee, D., and Kargupta, K., Int. J. Energy Res. 38 1889 (2014).CrossRefGoogle Scholar
Khamlich, S., Mokrani, T., Dhlamini, M.S., Mothudi, B.M., and Maaza, M., J. Colloid Interface Sci. 461, 154 (2016).CrossRefGoogle Scholar
Ferrari, A. C., Solid State Commun. 143, 47 (2007).CrossRefGoogle Scholar
Chamoli, P., Das, M. K., and Kar, K. K., J. Appl. Phys. 122, 185105 (2017).CrossRefGoogle Scholar
Khamlich, S., Barzegar, F., Nuru, Z. Y., Dangbegnon, J. K., Bello, A., Ngom, B.D., Manyala, N., and Maaza, M., Synth. Met. 198, 101 (2014).CrossRefGoogle Scholar
Bora, C., and Dolui, S. K., Polymers 53, 923 (2012).CrossRefGoogle Scholar
Khamlich, S., Khamliche, T., Dhlamini, M. S., Khenfouch, M., Mothudi, B. M., and Maaza, M., J. Colloid Interface Sci. 493, 130 (2017).CrossRefGoogle Scholar
Das, A., Chakraborty, B., and Sood, A. K., Bull. Mater. Sci. 31, 579 (2008).CrossRefGoogle Scholar
Neto, A. H. C., and Guinea, F., Phys. Rev. B61, 045404 (2007),CrossRefGoogle Scholar