Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T09:30:07.975Z Has data issue: false hasContentIssue false

Pulsed Electrodeposition of Tin Electrocatalysts onto Gas Diffusion Layers for Carbon Dioxide Reduction to Formate

Published online by Cambridge University Press:  27 December 2016

Sujat Sen
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
Brian Skinn
Affiliation:
Faraday Technology, Inc., Englewood, OH, 45315, USA
Tim Hall
Affiliation:
Faraday Technology, Inc., Englewood, OH, 45315, USA
Maria Inman
Affiliation:
Faraday Technology, Inc., Englewood, OH, 45315, USA
E. Jennings Taylor
Affiliation:
Faraday Technology, Inc., Englewood, OH, 45315, USA
Fikile R. Brushett*
Affiliation:
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper discusses a pulse electroplating method for developing tin (Sn)-decorated gas diffusion electrodes (GDEs) for the electrochemical conversion of carbon dioxide (CO2) to formate. The pulse-plated Sn electrodes achieved current densities up to 388 mA/cm2, more than two-fold greater than conventionally prepared electrodes (150 mA/cm2), both at a formate selectivity of 80%. Optical and microscopic analyses indicate improvements in deposition parameters could further enhance performance by reducing the catalyst particle size.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

References

REFERENCES

Merino-Garcia, I., Alvarez-Guerra, E., Albo, J., Irabien, A., Chem. Eng. J., 305, 104120 (2016).CrossRefGoogle Scholar
Irtem, E., Andreu, T., Parra, A., Hernandez-Alonso, M.D., Garcia-Rodriguez, S., Riesco-Garcia, J.M., Penelas-Perez, G., Morante, J.R., J. Mater. Chem. A, 4, 1358213588 (2016).Google Scholar
Pletcher, D., Electrochem. Commun., 61, 97101 (2015) .Google Scholar
Appel, A. M. et al. , Chem. Reviews, 113, 66216658 (2013).CrossRefGoogle Scholar
Verma, S., Kim, B., Jhong, H.-R.M., Ma, S., Kenis, P. J. A., ChemSusChem, 9, 19721979 (2016).CrossRefGoogle Scholar
Hori, Y., Wakebe, H., Tsukamoto, T., Koga, O., Electrochim. Acta, 39, 18331839 (1994).CrossRefGoogle Scholar
Agarwal, A.S., Zhai, Y., Hill, D., Sridhar, N., ChemSusChem, 4, 13011310 (2011).CrossRefGoogle Scholar
Singh, A.K., Singh, S., Kumar, A., Catal. Sci. Technol. 6, 1240 (2016).CrossRefGoogle Scholar
Del Castillo, A., Alvarez-Guerra, M., Solla-Gullón, J., Sáez, A., Montiel, V., Irabien, A., Appl. Energy, 157, 165173 (2015).CrossRefGoogle Scholar
Kopljar, D., Inan, A., Vindayer, P., Wagner, N., Klemm, E., Appl, J.. Electrochem., 44, 11071116 (2014).Google Scholar
Prakash, G.K.S., Viva, F.A., Olah, G.A., J. Power Sources, 223, 6873 (2013).Google Scholar
Del Castillo, A., Alvarez-Guerra, M., Irabien, A., AIChE Journal, 60, 35573564 (2014).CrossRefGoogle Scholar
Li, H., Oloman, C., J. Appl. Electrochem., 35, 955 (2005).Google Scholar
Jhong, H.-R.M., Brushett, F.R., Kenis, P.J.A., Adv. Energy Mater., 3, 589599 (2013).Google Scholar
Inman, M. E., Taylor, E.J., U.S. Patent No. 6,080,504, (27 June 2000).Google Scholar
Vilambi Reddy, N.R.K., Anderson, E. B., Taylor, E.J., U.S. Patent No. 5,084,144, 28 Jan 1992).Google Scholar
Taylor, E.J., Anderson, E.B., Vilambi, N.R.K., J. Electrochem. Soc., 139, L45L46 (1992).Google Scholar
Gebhart, L. E., Sun, J. J., Miller, P. O., Taylor, E. J., U.S. Patent No. 8,329,006 (11 December 2012).Google Scholar
Gebhart, L. E., Taylor, E. J., U.S. Patent No. 8,226,804 (24 July 2012).Google Scholar
Gebhart, L. E., Taylor, E. J., U.S. Patent No. 7,947,161 (24 May 2011).Google Scholar
Gebhart, L. E., Sun, J. J., Miller, P. O., Taylor, E. J., U.S. Patent No. 7,553,401 (30 June 2009).Google Scholar
Wu, J., Risalvato, F.G., Ma, S., Zhou, X.-D., J. Mater. Chem. A, 2, 16471651 (2014).CrossRefGoogle Scholar
Sen, S., Liu, D., Palmore, G.T.R., ACS Catal., 4, 30913095 (2014).Google Scholar
Kopljar, D., Inan, A., Vindayer, P., Wagner, N., Klemm, E., Chem. Eng. Technol., 39, 20422050 (2016).CrossRefGoogle Scholar