Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-01T06:25:53.378Z Has data issue: false hasContentIssue false

Progress on Ongoing Waste form HIP projects at ANSTO

Published online by Cambridge University Press:  02 April 2018

Eric R. Vance
Affiliation:
ANSTO Synroc, Australian Nuclear Science and Technology Organisation, Kirrawee DC, Locked Bag 2001, NSW2232, Australia
Dorji T. Chavara
Affiliation:
ANSTO Synroc, Australian Nuclear Science and Technology Organisation, Kirrawee DC, Locked Bag 2001, NSW2232, Australia
Daniel J. Gregg*
Affiliation:
ANSTO Synroc, Australian Nuclear Science and Technology Organisation, Kirrawee DC, Locked Bag 2001, NSW2232, Australia
*
*Corresponding author: [email protected]
Get access

Abstract:

Since the year 2000, Synroc has evolved from the titanate full-ceramic waste forms developed in the late 1970s to a hot isostatic pressing (HIP) technology platform that can be applied to produce glass, glass–ceramic, and ceramic waste forms and where there are distinct advantages over vitrification in terms of, for example, waste loading and suppressing volatile losses. This paper describes recent progress on waste form development for intermediate-level wastes from 99Mo production at ANSTO, spent nuclear fuel, fluoride pyroprocessing wastes and 129I. The microstructures and aqueous dissolution results are presented where applicable. This paper provides perspective on Synroc waste forms and recent process technology development in the nuclear waste management industry.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Carter, M. L., Li, H., Zhang, Y., Vance, E. R. and Mitchell, D. R. G. (2009) J. Nucl. Mater., 384, 322.CrossRefGoogle Scholar
Kesson, S. E. and Ringwood, A. E. (1983), Radioactive Waste Manage. Nucl. Fuel Cycle 4, 159Google Scholar
Vance, E. R., Davis, J., Olufson, K., Chironi, I., Karatchetvseva, I. and Farnan, I. (2012) J. Nucl. Mater., 420, 396.CrossRefGoogle Scholar
Vance, E. R., Gregg, D. J., Grant, C., Stopic, A and Maddrell, E. R. (2016), “Immobilisation of 129I in AgI Sodalite and CuI“,Materials Research Society Meeting, Boston, MA, USA.Google Scholar
Tanabe, H., Sakuragi, T., Yamaguchi, K., Sato, T. and Owada, H. (2010), Advances in Science and Technology, 73, 158.CrossRefGoogle Scholar
Vance, E. R., Perera, D. S., Moriccas, S., Aly, Z. and Begg, B. D. (2005), J. Nucl. Mater., 341, 93.CrossRefGoogle Scholar
Vance, E. R., Jostsons, A., Moricca, S., Stewart, M. W. A., Day, R. A., Begg, B. D., Hambley, M. J., Hart, K. P. and Ebbinghaus, B. B. (1999), “Synroc Derivatives for Excess Weapons Plutonium”, in Ceramics Transactions (Environmental Issues and Waste Management Technologies IV), Volume 93, Eds. Marra, J. C. and Chandler, G. T., American Ceramic Society, pp. 323–9.Google Scholar
Ebbinghaus, B. B., Van Konynenburg, R. A., Brummond, W. A., Armantrout, G. A., Curtis, P. G., Hobson, B. F., Farmer, S., Vance, E. R., Stewart, M. W., Walls, P. A., Herman, C. C. and Herman, D. T. (1999), “Process for Making Ceramic Composition for Immobilization of Actinides”, US Patent 6,320,091.Google Scholar