Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T05:35:41.686Z Has data issue: false hasContentIssue false

Preliminary multiscale studies of the montmorillonite, amylose and fatty acids for polymer-clay nanocomposite modeling

Published online by Cambridge University Press:  03 January 2019

Felipe A. R. Silva*
Affiliation:
Laboratório de Estudos Estruturais Moleculares, Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900Brasília - DF, Brazil.
Maria J. A. Sales
Affiliation:
Laboratório de Pesquisa em Polímeros e Nanomateriais, Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900Brasília - DF, Brazil.
Mohamed Ghoul
Affiliation:
Laboratoire d´Ingénierie des Biomolécules, Ecole Nationale Supérieure d’Agronomie et des Industries Alimentaires, Institut National Polytechnique de Lorraine, Université de Lorraine. 54501, Vandœuvre-lès-Nancy, France.
Latifa Chebil
Affiliation:
Laboratoire d´Ingénierie des Biomolécules, Ecole Nationale Supérieure d’Agronomie et des Industries Alimentaires, Institut National Polytechnique de Lorraine, Université de Lorraine. 54501, Vandœuvre-lès-Nancy, France.
Elaine R. Maia
Affiliation:
Laboratório de Estudos Estruturais Moleculares, Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, 70910-900Brasília - DF, Brazil.
*
Get access

Abstract:

This work presents the mesoscale step of a theoretical study of a Polymer-Clay Nanocomposite (PCN) composed by starch, pequi vegetable oil and montmorillonite (MMT), a phyllosilicate. In the present study, amylose oligomers, oleic, palmitic and stearic acids in the proportion found in that vegetable oil and MMT were studied, as a simplified model, in order to simulate in multiscale their structural and behavioral correlations. The calculations were carried out by Dissipative Particle Dynamics (DPD), at 363 K, using Materials StudioTM suite. The DPD model had its interaction parameters calculated from previous MD simulations. It was observed that the organic material concentrated near the MMT surfaces, which correlated with the MD results, implying in the validity of the model. The new knowledge acquired about those molecular systems, works as a starting point to build more complex models and, if the theoretical work converge with the experimental findings, encourages further studies in the design of PCNs with biopolymers.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Silva, F.A.R., Sales, M.J.A., Paterno, L.G., Ghoul, M., Chebil, L. and Maia, E.R., MRS Adv. 3, 1659 (2018).CrossRefGoogle Scholar
Silva, F.A.R., Sales, M.J.A., Matos, G.D.R., Ghoul, M., Chebil, L. and Maia, E.R., MRS Comm. 8, 266 (2018).CrossRefGoogle Scholar
Schlemmer, D., Angélica, R.S. and Sales, M.J.A., Comp. Struct. 92, 2066 (2010).CrossRefGoogle Scholar
Dassault Systèmes BIOVIA, Materials Studio, version 6.0. San Diego, CA, USA. (2012).Google Scholar
Español, P. and Warren, P.B.J., Chem. Phys. 146, 150901 (2017).Google Scholar
Shi, K., Lian, C., Bai, Z., Zhao, S. and Liu, H., Chem. Eng. Sci. 122, 185 (2015).CrossRefGoogle Scholar
Groot, R.D. and Warren, P.B., J. Chem. Phys., 107 (1997).CrossRefGoogle Scholar
Flory, P.J., Principles of polymer chemistry , (Cornell University Press, Ithaca 1953).Google Scholar
Pereira, A.P., Scocchi, G., Toth, R., Posocco, P., Nieto, D.R., Pricl, S. and , M.J. Fermeglia Mult. Model. 3, 1 (2012).Google Scholar
Toth, R., Santese, F., Pereira, S.P., Nieto, D.R., Pricl, S., Fermeglia, M. and Posocco, P.J., J. Mat. Chem. 22, 5398 (2012).CrossRefGoogle Scholar