Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T06:32:47.809Z Has data issue: false hasContentIssue false

A Practical Procedure for Measuring Contact Angles in Wettability Studies by the Sessile Drop Method

Published online by Cambridge University Press:  07 October 2019

J. López-Cuevas*
Affiliation:
Cinvestav Unidad Saltillo, Calle Industria Metalúrgica No. 1062, Parque Industrial Saltillo - Ramos Arizpe, 25900, Ramos Arizpe, Coahuila, México.
M.I. Pech-Canul
Affiliation:
Cinvestav Unidad Saltillo, Calle Industria Metalúrgica No. 1062, Parque Industrial Saltillo - Ramos Arizpe, 25900, Ramos Arizpe, Coahuila, México.
J.L. Rodríguez-Galicia
Affiliation:
Cinvestav Unidad Saltillo, Calle Industria Metalúrgica No. 1062, Parque Industrial Saltillo - Ramos Arizpe, 25900, Ramos Arizpe, Coahuila, México.
J.C. Rendón-Angeles
Affiliation:
Cinvestav Unidad Saltillo, Calle Industria Metalúrgica No. 1062, Parque Industrial Saltillo - Ramos Arizpe, 25900, Ramos Arizpe, Coahuila, México.
*
*Author to whom all correspondence should be addressed. E-mail: [email protected]
Get access

Abstract

An old procedure used to carry out a graphical derivation of curves, which is based on the optical properties of plane mirrors, has been adapted for the measurement of the contact angle (θ) formed between a liquid drop and a flat solid substrate in wettability experiments carried out by the so-called “sessile drop” method. The method was tested for mercury on soda-lime glass at room temperature in air as well as for Cusil (Ag-28wt.%Cu) and Incusil-ABA (Ag-27wt.%Cu-12wt.%In-2wt.%Ti) brazing alloys on pressureless-sintered silicon carbide (PLS-SiC) at 850 °C, under a vacuum of 10-4/10-5 Torr. The proposed method is fast, simple and accurate enough from high (∼140°) to relatively low (∼10°) contact angles. Although the proposed method has been tested for metal-ceramic systems, it is of general application, so that it would be useful for any liquid-solid system. The method is applicable for any temperature, pressure and atmospheric experimental conditions employed, as well as for any chemical composition of liquid and solid. It is also useful for both low and high contact angles, as well as for reactive and non-reactive systems, as long as a photograph of a liquid drop resting on a flat solid surface is available for the studied system.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Naidich, Ju.V., in Progress in Surface and Membrane Science, Volume 14, edited by Cadenhead, D.A. and Danielli, J.F. (Academic Press Inc., New York, 1981), p. 353.Google Scholar
White, D.W.G., A Supplement to the Tables of Bashforth and Adams, Catalogue no. M37-1067 (Queen’s Printer, Ottawa, 1967).Google Scholar
Bashforth, F. and Adams, J.C., An Attempt to Test the Theory of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid (Cambridge University Press, London, 1883).Google Scholar
Kingery, W.D., Am. Ceram. Soc. Bull. 35, 108 (1956).Google Scholar
Farshid Chini, S. and Amirfazli, A., Colloids Surf. A 388, 29 (2011).CrossRefGoogle Scholar
Yuan, Y. and Lee, T.R., in Surface Science Techniques, Springer Series in Surface Sciences, Volume 51, edited by Bracco, G. and Holst, B. (Springer-Verlag, Berlin, 2013), p. 3.Google Scholar
Bartell, F.E. and Zuidema, H.H., J. Am. Chem. Soc. 58, 1449 (1936).CrossRefGoogle Scholar
Mack, G.L., J. Phys. Chem. 40, 159 (1936).CrossRefGoogle Scholar
Yin, T.P., J. Phys. Chem. 73, 2413 (1969).CrossRefGoogle Scholar
Shih, C.-J., Strano, M.S. and Blankschtein, D., Nat. Mater. 12, 866 (2013).CrossRefGoogle Scholar
Parobek, D. and Liu, H., 2D Mater. 2, 032001 (2015).CrossRefGoogle Scholar
An, S., Joshi, B.N., Lee, J.-G., Lee, M.W., Kim, Y.I., Kim, M.-W., Jo, H.S. and Yoon, S.S., Catal. Today 295, 14 (2017).CrossRefGoogle Scholar
Feng, J. and Guo, Z., Nanoscale Horiz. 4, 339 (2019).CrossRefGoogle Scholar
Dalmônico, G.M.L., Silva, D.F., Franczak, P.F., Camargo, N.H.A. and Rodríguez, M.A., Bol. Soc. Esp. Ceram. Vidrio 54, 37 (2015).CrossRefGoogle Scholar
Canillas, M., Pena, P., de Aza, A.H. and Rodríguez, M.A., Bol. Soc. Esp. Ceram. Vidrio 56, 91 (2017).CrossRefGoogle Scholar
Ramqvist, L., Int. J. Powder Metall. 1, 2 (1965).Google Scholar
Giordano, N.J., College Physics, Volume 2, 2nd ed. (Cengage Learning, Boston, MA, 2012).Google Scholar
Elmendorf, A., Sci. Am. Suppl. 81 (2093), 100 (1916).CrossRefGoogle Scholar
Elmendorf, A., Am. Math. Mon. 23, 292 (1916).CrossRefGoogle Scholar
Elmendorf, A., J. Franklin Inst. 185, 119 (1918).CrossRefGoogle Scholar
Lipka, J., Graphical and Mechanical Computation - Including Nomographs and Mechanical Integration, 1st ed. (John Wiley and Sons, New York, 1918).Google Scholar
Latshaw, M., J. Am. Chem. Soc. 47, 793 (1925).CrossRefGoogle Scholar
Hasche, R.L. and Patrick, W.A., J. Am. Chem. Soc. 47, 1207 (1925).CrossRefGoogle Scholar
Richards, O.W. and Roope, P.M., Science 71, 290 (1930).CrossRefGoogle Scholar
Shapiro, H., Biol. Bull. 63, 456 (1932).CrossRefGoogle Scholar
Bush, V., Bull. Amer. Math. Soc. 42, 649 (1936).CrossRefGoogle Scholar
Pearlson, W.H. and Simons, J.H., J. Am. Chem. Soc. 67, 352 (1945).CrossRefGoogle Scholar
Frampton, V.L., Science 107, 323 (1948).CrossRefGoogle Scholar
Riebling, E.F., J. Chem. Phys. 39, 3022 (1963).CrossRefGoogle Scholar
Bermant, A.F., A Course of Mathematical Analysis, Part I, International Series of Monographs on Pure and Applied Mathematics, (Pergamon Press Ltd, Oxford, 1963).Google Scholar
Riebling, E.F., J. Chem. Phys. 41, 451 (1964).CrossRefGoogle Scholar
Bergmeyer, H.U., in Methods of Enzymatic Analysis, edited by Bergmeyer, H.U. (Verlag Chemie, Weinheim/Bergstr, 1965), p. 1.Google Scholar
Lark, P.D., Craven, B.R. and Bosworth, R.C.L., The Handling of Chemical Data, 1st ed. (Pergamon, Oxford, 1968).Google Scholar
King, M.B., Phase Equilibrium in Mixtures, International Series of Monographs in Chemical Engineering, 1st ed. (Pergamon Press Ltd, Oxford, 1969).Google Scholar
Ziauddin, S., Phys. Teach. 12, 106 (1974).CrossRefGoogle Scholar
Côme, G.M., in Modern Methods in Kinetics, Comprehensive Chemical Kinetics, Volume 24, edited by Bamford, C.H. and Tipper, C.F.H. (Elsevier, Amsterdam, 1983), p. 249.Google Scholar
Ghosal, S.K., Sanyal, S.K. and Datta, S., Introduction to Chemical Engineering, (Tata McGraw-Hill Education, New Delhi, 1993).Google Scholar
Barton, L.O., Mechanism Analysis: Simplified and Graphical Techniques, Mechanical Engineering Series, 2nd ed. (Marcel Dekker Inc., New York, 1993).Google Scholar
Gupta, C., Mishra, S.K. and Sharma, P.D., Transition Met. Chem. 19, 65 (1994).Google Scholar
Goetsch, D.L., Technical Drawing, (Cengage Learning, Boston, MA, 2005).Google Scholar
Gellert, W., Gottwald, S., Hellwich, M., Kästner, H. and Küstner, H., in The VNR Concise Encyclopedia of Mathematics, edited by Gellert, W., Hellwich, M., Kästner, H. and Küstner, H. (Van Nostrand Reinhold Company, New York, 2012), p. 406.Google Scholar
Bronshtein, I.N. and Semendyayev, K.A., Handbook of Mathematics, 3rd ed. (Springer Science & Business Media, Berlin, Heidelberg, New York, 2013).Google Scholar
Neoh, T.L., Adachi, S. and Furuta, T., Introduction to Food Manufacturing Engineering, (Springer, Singapore, 2016).CrossRefGoogle Scholar
López-Cuevas, J., Jones, H. and Atkinson, H.V., J. Mater. Sci. Eng. A 266, 161 (1999).CrossRefGoogle Scholar
Barrat, J.-L. and Bocquet, L., Phys. Rev. Lett. 82, 4671 (1999).CrossRefGoogle Scholar
Salmas, C. and Androutsopoulos, G., J. Colloid Interface Sci. 239, 178 (2001).CrossRefGoogle Scholar
Pan, Z., Cheng, F. and Zhao, B., Polymers 9, 725 (2017).CrossRefGoogle ScholarPubMed
López-Cuevas, J., Rendón-Angeles, J.C., Rodríguez-Galicia, J.L. and Gutiérrez-Chavarría, C.A., MRS Adv., published online, DOI: https://doi.org/10.1557/adv.2019.361Google Scholar