Article contents
Poly(HDDA)-Based Polymers for Microfabrication and Mechanobiology
Published online by Cambridge University Press: 16 January 2017
Abstract
Materials processing and additive manufacturing afford exciting opportunities in biomedical research, including the study of cell-material interactions. However, some of the most efficient materials for microfabrication are not wholly suitable for biological applications, require extensive post-processing or exhibit high mechanical stiffness that limits the range of applications. Conversely, materials exhibiting high cytocompatibility and low stiffness require long processing times with typically decreased spatial resolution of features. Here, we investigated the use of hexanediol diacrylate (HDDA), a classic and efficient polymer for stereolithography, for oligodendrocyte progenitor cell (OPC) culture. We developed composite HDDA-polyethylene glycol acrylate hydrogels that exhibited high biocompatibility, mechanical stiffness in the range of muscle tissue, and high printing efficiency at ∼5 μm resolution.
Keywords
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2017
References
REFERENCES
- 4
- Cited by