Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T11:02:02.217Z Has data issue: false hasContentIssue false

Poly(ε-Caprolactone) Nanofibers for Biomedical Scaffolds by High-Rate Alternating Current Electrospinning

Published online by Cambridge University Press:  11 April 2016

Caitlin Lawson
Affiliation:
Department of Physics, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
Manikandan Sivan
Affiliation:
Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, Liberec 1, 461 17, Czech Republic
Pavel Pokorny
Affiliation:
Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, Liberec 1, 461 17, Czech Republic
Andrei Stanishevsky*
Affiliation:
Department of Physics, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA
David Lukáš
Affiliation:
Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, Liberec 1, 461 17, Czech Republic
*
Get access

Abstract

Poly(ε-caprolactone) (PCL) biopolymer nano- and micro-fibers have been fabricated at high rates up to 14.0 grams per hour using a needleless and collectorless alternating current electrospinning technique. By combining the ac-voltage, glacial acetic acid (AA) as the solvent and sodium acetate (NaAc) as an additive, beadless PCL fibers with diameters tunable from 150 nm to 2000 nm, varying surface morphology and degree of self-bundling were obtained. In this new approach, the addition of NaAc plays a crucial role in improving the spinnability of PCL solution and fiber morphology. NaAc revealed the concentration-dependent effect on charge transfer and rheological properties of the PCL/AA precursor, which results in broader ranges of spinnable PCL concentrations and ac-voltages suitable for rapid manufacturing of PCL-based fibers with different textural properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jeong, S.I., Kim, B.S., Kang, S.W., Kwon, J.H., Lee, Y.M., Kim, S.H., Kim, Y.H., Biomat. 2004, 25, 5939.CrossRefGoogle Scholar
Abedalwafa, M., Wang, F., Wang, L., Li, C., Rev. Adv. Mater. Sci. 2013, 34, 123.Google Scholar
Azimi, B., Nourpanah, P., Rabiee, M., Arbab, S., J. Engineered Fibers and Fabrics 2014, 9, 74.Google Scholar
Malheiro, V.N., Caridade, S.G., Alves, N.M., Mano, J.F., Acta Biomaterialia 2010, 6, 418.CrossRefGoogle Scholar
Diban, N., Haimi, S., Bolhuis-Versteeg, L., Teixeira, S., Miettinen, S., Poot, A., Grijpma, D., Stamatialis, D., Acta Biomaterialia 2013, 9, 6450.CrossRefGoogle Scholar
Edwards, A., Jarvis, D., Hopkins, T., Pixley, S., Bhattarai, N., J. Biomed. Mater. Res. B. 2015, 103, 21.CrossRefGoogle Scholar
Bosworth, L.A., Downes, S., J. Polym. Environ. 2012, 20, 879.CrossRefGoogle Scholar
Luo, C.J., Stride, E., Edirisinghe, M., Macromolecules 2012, 45, 4669.CrossRefGoogle Scholar
Moghe, A.K., Hufenus, R., Hudson, S.M., Gupta, B.S., Polymer 2009, 50, 3311.CrossRefGoogle Scholar
Van Der Schueren, L., De Schoenmaker, B., Kalaoglu, O.I., De Clerck, K., Eur. Polym. J. 2011, 47, 1256.CrossRefGoogle Scholar
Dias, J.R., Antunes, F.E., Bártolo, P.J., Chem. Eng. Trans. 2013, 32, 1015.Google Scholar
Kanani, G.A., Bahrami, S.H., J. Nanomat., 2011, art. no. 724153, .Google Scholar
Ferreira, J.L., Gomes, S., Henriques, C., Borges, J.P., Silva, J.C., Appl, J.. Polym. Sci. 2014, 131, 41068.Google Scholar
Collins, G., Federici, J., Imura, Y., Catalani, L.H., J. Appl. Phys. 2012, 111, 044701.CrossRefGoogle Scholar
Pokorny, P., Koštáková, E., Sanetmik, F., Mikes, P., Chvojka, J., Kalous, T., Bilek, M., Pejchar, K., Valtera, J., Lukaš, D., Phys. Chem. Chem. Phys. 2014, 16, 26816.CrossRefGoogle Scholar
Drews, A.M., Cademartiri, L., Whitesides, G.M., Bishop, K.J.M., J.Appl. Phys. 2012, 114, 143302.CrossRefGoogle Scholar
Stanishevsky, A., Wetuski, J., Walock, M., Stanishevskaya, I., Yockell-Lelièvre, H., Koštáková, E., Lukaš, D., RCS Advances 5, 6953469542 (2015).Google Scholar
Raicu, V., Bǎran, A., Iovescu, A., Anghel, D.F., Saito, S., Colloid. Polym. Sci. 1997, 275, 372.CrossRefGoogle Scholar