Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T12:09:12.397Z Has data issue: false hasContentIssue false

Plant Growth Enhancement of Seeds Immersed in Plasma Activated Water

Published online by Cambridge University Press:  15 February 2017

Thapanut Sarinont*
Affiliation:
Kyushu University, Motooka 766, Fukuoka 819-0395, Japan.
Ryu Katayama
Affiliation:
Kyushu University, Motooka 766, Fukuoka 819-0395, Japan.
Yosuke Wada
Affiliation:
Kyushu University, Motooka 766, Fukuoka 819-0395, Japan.
Kazunori Koga
Affiliation:
Kyushu University, Motooka 766, Fukuoka 819-0395, Japan.
Masaharu Shiratani
Affiliation:
Kyushu University, Motooka 766, Fukuoka 819-0395, Japan.
*
Get access

Abstract

We have produced plasma activated water (PAW) using air, O2, N2, He and Ar atmospheric pressure dielectric barrier discharge plasma irradiation to deionized water. Then, PAW was kept for 1 hour or 1 day at room temperature to reduce concentrations of short lifetime reactive oxygen species and reactive nitrogen species before supplying to plants. O2, air and N2 PAW induces growth enhancement of plants. For 1 hour PAW supply the longest seedling length after 3 days cultivation is 1.62, 1.38, 1.13, 1.12, and 1.04 times long for air, O2, He, N2, and Ar plasmas compared with the length for thecontrol, whereas for 1 day PAW supply it is 1.52, 1.28, 1.13, 1.10, and 1.08 times long for air, O2, He, N2 and Ar. Therefore, long lifetime reactive oxygen nitrogen species in PAW is effective for the growth enhancement.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Xu, D., Liu, D., Wang, B., Chen, C., Chen, Z., Li, D., Yang, Y., Chen, H., and Kong, M. G., PLOS ONE 10, e0128205 (2015).Google Scholar
von Woedtke, T., Reuter, S., Masur, K., and Weltmann, K. D., Phys. Rep. 530, 291 (2013).Google Scholar
Kong, M. G., Kroesen, G., Morfill, G., Nosenko, T., Shimizu, T., van Dijk, J., and Zimmermann, J. L., New J. Phys. 11, 115012 (2009).Google Scholar
Fridman, G., Friedman, G., Gutsol, A., Shekhter, A. B., Vasilets, V. N., and Fridman, A., Plasma Processes Polym. 5, 503 (2008).Google Scholar
Utsumi, F., Utsumi, H. F., Kajiyama, H., Nakamura, K., Tanaka, H., Mizuno, M., Ishikawa, K., Kondo, H., Kano, H., Hori, M., and Kikkawa, F., PLOS ONE 8, e81576 (2013).Google Scholar
Mohades, S., Laroussi, M., Sears, J., Barekzi, N., and Razavi, H., Phys. Plasmas 22, 122001 (2015).Google Scholar
Rupf, S., Lehmann, A., Hannig, M., Schafer, B., Schubert, A., Feldmann, U., and Schindler, A., J. Med. Microbiol. 59, 206 (2010).Google Scholar
Yamazaki, H., Ohshima, T., Tsubota, Y., Yamaguchi, H., Jayawardena, J. A., and Nishimura, Y., Dent. Mater. J. 30, 384 (2011).Google Scholar
Deng, X. T., Shi, J. J., Chen, H. L., and Kong, M. G., Appl. Phys. Lett. 90, 013903 (2007).Google Scholar
Nastuta, A. V., Topala, I., Grigoras, C., Pohoata, V., and Popa, G., J. Phys. D 44, 105204 (2011).Google Scholar
Collet, G., Robert, E., Lenoir, A., Vandamme, M., Darny, T., Dozias, S., Kieda, C., and Pouvesle, J. M., Plasma Sources Sci. Technol. 23, 012005 (2014).Google Scholar
Vandamme, M., Robert, E., Lerondel, S., Sarron, V., Ries, D., Dozias, S., Sobilo, J., Gosset, D., Kieda, C., Legrain, B., Pouvesle, J. M., and Pape, A. L., Int. J. Cancer 130, 2185 (2012).CrossRefGoogle Scholar
Plewa, J. M., Yousfi, M., Frongia, C., Eichwald, O., Ducommun, B., Merbahi, N., and Lobjois, V., New J. Phys. 16, 043027 (2014).CrossRefGoogle Scholar
Norberg, S. A., Tian, W., Johnsen, E., and Kushner, M. J., J. Phys. D 47, 475203 (2014).Google Scholar
Hong, S. H., Szili, E. J., Jenkins, A. T. A., and Short, R. D., J. Phys. D 47, 362001 (2014).Google Scholar
Dobrynin, D., Fridman, A., and Starikovskiy, A. Y., IEEE Trans. Plasma Sci. 40, 2163 (2012).CrossRefGoogle Scholar
Mcmichael, A.J., Powles, J.W., Butler, C.D., Uauy, R., Lancet 370, 1253 (2007).Google Scholar
Oerke, E.C., Dehne, H.W., Schonbeck, F., Weber, A., Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops, Elsevier, Amsterdam, 1981.Google Scholar
Godfray, J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C., Science 327, 812 (2010).Google Scholar
Ehrlich, P.R., Ehrlich, A.H., Daily, G.C., Review 19, 1 (1993).Google Scholar
Ruttan, V.W., Econ, J.. Perspect. 16, 161 (2002).Google Scholar
Uchida, G., Nakajima, A., Takenaka, K., Koga, K., Shiratani, M., and Setsuhara, Y., IEEE Transactions on Plasma Science 43, 4081 (2015).Google Scholar
Attri, P., Sarinont, T., Kim, M., Amano, T., Koga, K., Cho, A. E., Choi, E. H., and Shiratani, M., Sci. Rep. 5, 17781 (2015).CrossRefGoogle Scholar
Park, J. H., Kim, M., Shiratani, M., Cho, A. E., Choi, E. H., and Attri, P., Sci. Rep. 6, (2016).Google Scholar
Attri, P., Yusupov, M., Park, J. H., Lingamdinne, L. P., Koduru, J. R., Shiratani, M., Choi, E. H., Bogaerts, A., Sci. Rep. 6, 34419 (2016).Google Scholar
Kawasaki, T., Kawano, K., Mizoguchi, H., Yano, Y., Yamashita, K., Sakai, M., Shimizu, T., Uchida, G., Koga, K., and Shiratani, M., IEEE Trans. Plasma Sci. 42, 2482 (2014).Google Scholar
Kawasaki, T., Kusumegi, S., Kudo, A., Sakanoshita, T., Tsurumaru, T., Sato, A., Uchida, G., Koga, K., and Shiratani, M., J. Appl. Phys. 119, 173301 (2016).Google Scholar
Kawasaki, T., Sato, A., Kusumegi, S., Kudo, A., Sakanoshita, T., Tsurumaru, T., Uchida, G., Koga, K., and Shiratani, M., Appl. Phys. Exp. 9, 076202 (2016).Google Scholar
Kitazaki, S., Yamashita, D., Matsuzaki, H., Uchida, G., Koga, K., Shiratani, M., and Hayashi, N., TENCON 2010 - 2010 IEEE Region 10 Conference 1960 (2010).Google Scholar
Kitazaki, S., Koga, K., Shiratani, M., and Hayashi, N., Jpn. J. Appl. Phys. 51, 01AE01 (2012).Google Scholar
Kitazaki, S., Koga, K., Shiratani, M., and Hayashi, N., MRS Proc. 1469, mrss12-1469-ww02-08 (2012).Google Scholar
Kitazaki, S., Sarinont, T., Koga, K., Hayashi, N., and Shiratani, M., Curr. Appl. Phys. 14, S149 (2014).Google Scholar
Hayashi, N., Ono, R., Shiratani, M., and Yonesu, A., Jpn. J. Appl. Phys. 54, 06GD01 (2015).Google Scholar
Koga, K., Thapanut, S., Amano, T., Seo, H., Itagaki, N., Hayashi, N., and Shiratani, M., Appl. Phys. Exp. 9, 016201 (2016).Google Scholar
Sarinont, T., Amano, T., Attri, P., Koga, K., Hayashi, N., and Shiratani, M., Arch. Biochem. Biophys. 605, 129 (2016).Google Scholar
Watanabe, S., Ono, R., Hayashi, N., Shiratani, M., Tashiro, K., Kuhara, S., Inoue, A., Yasuda, K., and Hagiwara, H., Jpn. J. of Appl. Phys. 55, 07LG10 (2016).Google Scholar