Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T05:28:15.971Z Has data issue: false hasContentIssue false

Photovoltaics: Upconversion Configurations versus Tandem Cells

Published online by Cambridge University Press:  10 July 2017

Joop van Deelen*
Affiliation:
Solliance/TNO, High Tech Campus, 21, 5656AE, Eindhoven, The Netherlands.
*
Get access

Abstract

For a wide range of bandgaps of solar cell materials, the potential contribution of upconversion materials was calculated and related to various configurations of the solar cell and upconversion layers. Moreover, by comparing these various strategies with the potential of a dual junction tandem cell configuration, a compelling case is made for upconverters.

At idealized 100% conversion efficiency, the upconverter with a single junction cell is more efficient than a dual junction tandem cell. It was also found that a single junction cell with an upconverter that is ‘only’ 80% efficient has a similar efficiency as an ideal dual junction cell. This result shows that upconverters are certainly a route worthwhile to pursue, especially because the single junction cells plus upconverters could have more cost reduction potential than dual junction cell configurations.

Additionally, it was investigated if an upconverter that uses two different photon energies would create a large surplus in efficiency. For a cell band gap of 1.55 eV a theoretical maximum efficiency (here defined as Voc*Isc) of 54.5% was calculated. Although there is a further increase in efficiency compared to converters with a single conversion energy, very careful bandgap tuning with a tolerance < 0.02 eV is required, which makes this system rather sensitive for material and solar spectrum fluctuations and it is suggested that a simple upconverter material is a more favorable strategy.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

van Sark, W.G.J.H.M., de Wild, J., Rath, J.K., Meijerink, A., R.E.I. Schropp Nanoscale Research Letters 8, 81 (2013).Google Scholar
Conibeer, G., Shalav, A., Trupke, T., Green, M., Mater. Res. Soc. Symp. 1101, 1101-KK10-05 (2008)CrossRefGoogle Scholar
ten Kate, O.M., de Jong, M., Hintzen, H.T., van der Kolk, E., J. Appl. Phys. 114, 084502 (2013).Google Scholar
Pazos-Outón, L.M., Lee, J.M., Futscher, M.H., Kirch, A., Tabachnyk, M., Friend, R.H., Ehrler, B., ACS Energy Lett. 2, 476 (2017).Google Scholar
Goldschmidt, J.C.. Et al. Proceedings of the 29th EUPVSEC, Sept. 2014, Amsterdam, The Netherlands (2014).Google Scholar
Fischer, S., Martin-Rodriguez, R., Fröhlich, B., Krämer, K.W., Meijerink, A., Goldschmidt, J.C., J. Luminesc. 153, 281 (2014).Google Scholar
Pokhrel, M., Gangadharan, A.K., Sardar, D.K., Mater. Lett. 99, 86 (2013).CrossRefGoogle Scholar
Feenstra, J., Fix, I.F., Asselbergs, M.A.H., van Leest, R.H., de Wild, J., Meijerink, A., Schropp, R.E.I., Rowan, A.E., Schermer, J.J., Phys. Chem. Chem. Phys. 17, 11234 (2015).Google Scholar
Chen, S., Stehr, J.E., Koteeswara, N. Tu, R.C.W., Chen, W., Buyanova, I., Appl. Phys. B, Lasers and optics 108, 919 (2012).Google Scholar
Cheng, Y.Y., Nattestad, A., Schulze, T.F., MacQueen, R.W., Fückel, B., Lips, K., Wallace, G.G., Khoury, T., Crossley, M.J., Schmidt, T.W., Chem. Sci. 7, 559 (2016).Google Scholar
Shang, Y., Hao, S., Yang, C., Chen, G, Nanomat. 5, 1782 (2015).Google Scholar
van Deelen, J, Bauhuis, G.J., Schermer, J.J., Mulder, P., Haverkamp, E.J. Larsen, P.K., J. Crystal Growth 298, 772 (2007).Google Scholar
Mailoa, J.P., Lee, M., Peters, I.M., Buonassisi, T., Panchula, A., Weiss, D.N., Energy Environ. Sci. 9, 2644 (2016).Google Scholar
Mailoa, J.P., Bailie, C D., Johlin, E C., Hoke, E.T., Akey, A.J., Ngyuen, W.H., McGehee, M.D., Nuonassisi, T., Appl. Phys. Lett. 106, 121105 (2015).Google Scholar
Moon, S.H., Park, S.J., Kim, S. H., Lee, M.W., Han, J., Kim, J.Y., Kim, H., Hwang, Y.J., Lee, D.K., Min, B.K., Sci. Rep. 5, 8970 (2015).Google Scholar
Bailie, C. D., McGehee, M.D., MRS Bull. 40, 681 (2015).Google Scholar
Fillipic, M., Löper, P., Niesen, B, De Wolf, S., Krc, J., Ballif, C., Topic, M., Optics Express 23, A263 (2015).Google Scholar
Tayeberjee, M.J.Y., McCamey, D.R, Schmidt, T.W, J. Phys. Chem. Lett. 6, 2367 (2015)Google Scholar
Trupke, T., Green, M.A., Würfel, P., J. Appl. Phys. 92, 4117 (2002).Google Scholar
Nayak, P.K., Bisquert, J., Cahen, D., Adv. Mater. 23, 2870 (2011).Google Scholar
Bailie, C.D., Christoforo, M.G., Mailoa, J.P., Bowring, A.R., Unger, E.L., Nguyen, W.H., Burschka, J., Pellet, N.. Lee, J.Z., Grätzel, M., Noufi, R., Buonassisi, T., Salleoa, A., McGehee, M.D., Energy Environ. Sci. 8, 956 (2015).Google Scholar
King, R. R., Bhusari, D., Boca, A., Larrabee, D., Liu, X.-Q., Hong, W., Fetzer, C. M., Law, D. C., Karam, N. H., Prog. Photovolt. Res. Appl. 19, 797 (2011).Google Scholar