Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T11:17:46.543Z Has data issue: false hasContentIssue false

Phenomenological Modeling of Confined Phonon States in TMD Quantum Dots

Published online by Cambridge University Press:  29 January 2018

Lu Fang
Affiliation:
Pennsylvania State University, University Park, PA 16802, U. S. A.
Tamia Willliam
Affiliation:
Pennsylvania State University, Altoona, PA, 16601, U. S. A.
Kofi W. Adu*
Affiliation:
Pennsylvania State University, Altoona, PA, 16601, U. S. A.
Mauricio Terrones
Affiliation:
Pennsylvania State University, University Park, PA 16802, U. S. A.
*
Get access

Abstract

Several reports have shown band-gap tuning in TMDs, from indirect band gap in the bulk material to a direct gap in single layer due to the absence of interlayer coupling. This unique property stems from the modified electronic states. The phononic properties are extremely modified as well, due to layered effect and quantum size effect. There are several reports on layered effect; however, reports on the confined phonon states in these structures are limited. Thus, we present a preliminary studies of the confined phonon states in TMDs (WS2 and MoS2) quantum dots, and elucidate on the evolution of the phonon lineshape with diameter using a phenomenological model with an envelop function that truncates the phonon wave at the surface of the quantum dot. Furthermore, we delineate the layered effect from the quantum size effect in the phonon lineshape of WS2 and MoS2.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Zhou, K.-G., Mao, N.-N, Wang, H.-X., Peng, Y., Zhang, H.-L., Angew. Chem., Int. Ed., 50, 1083910842 (2011).CrossRefGoogle Scholar
Chowalla, M., Shin, H. S., Eda, G., Li, L.-J., Loh, K. P., Zhang, H., Nat. Commun., 5, 263275 (2013).Google Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., Firsov, A. A., Nature, 438, 197 (2005)CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A., Science., 306, 666 (2004)CrossRefGoogle Scholar
Gupta, A., Chen, G., Joshi, P., Tadigadapa, S., and Eklund, P.C., Nano Lett., Vol. 6, No. 12, 26672673 (2006)CrossRefGoogle Scholar
D Zou, Y., X Wang, X., Chen, Z. S., Yao, W., Ai, Y. J., H Liu, Y., Hayat, T., Alsaedi, A., Alharbi, N.S., Wang, X.K, Environmental Pollution, 219, 107117 (2016)CrossRefGoogle Scholar
Lin, D. C., Liu, Y. Y., Liang, Z., Lee, H. W., J Sun, H. Wang, T. Yan, K., Xie, J., Cui, Y., Nature Nanotechnology, 11, 626, (2016)CrossRefGoogle Scholar
Yin, Z., Li, H., Li, H., Jiang, L., Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. ACS Nano, 6, 7480 (2011)CrossRefGoogle Scholar
Cunningham, G., Lotya, M., Cucinotta, C. S., Sanvito, S., Bergin, S. D., Menzel, R., Shaffer, M. S. P., Coleman, J. N., ACS Nano, 6, 34683480 (2012)CrossRefGoogle Scholar
Coleman, J. N., Lotya, M., O’Neill, A., Bergin, S. D., King, P. J., Khan, U., Young, K., Gaucher, A., De, S., Smith, R. J., Shvets, I. V., Science, 331, 568571 (2011)CrossRefGoogle Scholar
Zeng, Z., Sun, T., Zhu, J., Huang, X., Yin, Z., Lu, G., Fan, Z., Yan, Q., Hng, H. H., Zhang, H., Angewandte Chem., Int. Ed., 51, 90529056. (2012)CrossRefGoogle Scholar
Lee, Y.-H., Zhang, X.-Q., Zhang, W., Chang, M.-T., Lin, C.-T., Chang, K.-D., Yu, Y.-C., Wang, J. T.-W., Chang, C.-S., Li, L.-J., Lin, T.-W., Adv. Mater., 24, 23202325. (2012)CrossRefGoogle Scholar
Najmaei, S., Liu, Z., Zhou, W., Zou, X., Shi, G., Lei, S., Yakobson, B. I., Idrobo, J.-C., Ajayan, P.M., Lou, J., Nat. Mater., 12, 754759. (2013)CrossRefGoogle Scholar
Gopalakrishnan, D., Damien, D., Li, B., Gullappalli, H., Pillai, V. K., Ajayan, P. M. and Shaijumon, M. M., Nanosheets Chem. Commun., 51, 6293. (2015)CrossRefGoogle Scholar
Chen, Y., Dumcenco, D. O., Zhu, Y., Zhang, X., Mao, N., Feng, Q., Zhang, M., Zhang, J., Tan, P.-H., Huang, Y.-S. and Xie, L., Nanoscale, 6, 28332839. (2014)CrossRefGoogle Scholar
Mann, J., Ma, Q., Odenthal, P. M., Isarraraz, M., Le, D., Preciado, E., Barroso, D., Yamaguchi, K., von Son Palacio, G., Nguyen, A., Tran, T., Wurch, M., Nguyen, A., Klee, V., Bobek, S., Sun, D., Heinz, T. F., Rahman, T. S., Kawakami, R. and Bartels, L., Adv. Mater., 26, 13991404. (2014)CrossRefGoogle Scholar
Feng, Q., Zhu, Y., Hong, J., Zhang, M., Duan, W., Mao, N., Wu, J., Xu, H., Dong, F., Lin, F., Jin, C., Wang, C., Zhang, J. and Xie, L., Adv. Mater., 26, 26482653. (2014)CrossRefGoogle Scholar
Qiao, X.-F., Li, X.-L., Zhang, X., Shi, W., Wu, J.-B., Chen, T. and Tan, P.-H., Appl. Phys. Lett., 106, 223102. (2015)CrossRefGoogle Scholar
Pumera, M., sofer, Z, ambrosi, A, Journal of Materials Chemistry. A, Materials for Energy and sustainability (2050-7488), 2, 8981, (2014)CrossRefGoogle Scholar
Chen, R.J.., Zhao, T., Wu, W. P., Wu, F., Li, L., Qian, J., Xu, R., J Wu, H., Albishri, H. M., Al-Bogami, A. S., Abd El-Hady, D., Lu, J., and Amine, K. Nano Lett. 14, 58995904 (2014)CrossRefGoogle Scholar
Yong, A., Eng, S., Ambrosi, A., Sofer, Zdenek, Simek, P., and Pumera, M., ACS Nano, 8(12) 1218512198, (2014)Google Scholar
Huang, X., Zeng, Z., Zhang, H., Chem. Soc. Rev. 42, 19341946. (2013)CrossRefGoogle Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., Heinz, T. F., Phys. Rev. Lett. 105, 136805 14. (2010)CrossRefGoogle Scholar
Yao, Z., Kane, C. L. and Dekker, C., Phys. Rev. Lett. 84, 2941, (2000)CrossRefGoogle Scholar
Kaasbjerg, K., Thygesen, K. S. and Jacobsen, K. W., Phys. Rev. B, 85 115317 (2012)CrossRefGoogle Scholar
Zeng, H. L., Dai, J. F., Yao, W., Xiao, D. and Cui Nat, X. D.. Nanotechnol. 7, 490 (2012)Google Scholar
Staiger, M., Gillen, R., Scheuschner, N., Ochedowki, O., Kampmann, F., PRB, 91, 195419, (2015)CrossRefGoogle Scholar
Zhang, X., Qiao, X. F., Shi, W., Wo, J. B., Jiang, D. S., Tan, P. H., Chem. Soc. Rev., 44, 2757, (2015)CrossRefGoogle Scholar
Shi, W., Zhang, X., Li, X. L., Qiao, X. F., Wu, J. B, zhang, J. Tan, P. H Chin. Phys. Lett., 33 (5) 057801, (2016)CrossRefGoogle Scholar
Zhang, X., H Tan, Q., Wu, J. B., Shi, W, H Tan, P., Nanoscale, 8, 6435 (2016)CrossRefGoogle ScholarPubMed
Jiang, Y. C. Gao, J., Wang, L., scientific Reports, 6, 19624, (2016)CrossRefGoogle Scholar
Saito, R., Tatsumi, Y., Huag, S, Ling, X., Dresselhaus, M. S., J. Phys.: Condens Matter, 28, 353002 (2016)Google Scholar
Lee, C., Yan, H., Brus, L. E., Heinz, T. F., Hone, J. and Ryu, S., ACS Nano, 4, 2695 (2010)CrossRefGoogle Scholar
Molina-Sanchez, A. and Wirtz, L., Phys. Rev B, 84, 155413 (2011)CrossRefGoogle Scholar
Gopalakrishnan, D., Damien, D., Shaijumon, M. M., ACS Nano, 8, (5), 5297, (2014)CrossRefGoogle Scholar
Richter, H, Wang, Z and Ley, L, Solid State Commun. 39, 625, (1981)CrossRefGoogle Scholar
Campbell, I. and Fauchet, P., Solid State Commun, 58, 739 (1986)CrossRefGoogle Scholar
Adu, K. W., Gutiérrez, H. R., Kim, U. J., Sumanasekera, G. U., Eklund, P. C., Nano Letters, 5(3) 409414 (2005)CrossRefGoogle Scholar