Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T14:42:44.901Z Has data issue: false hasContentIssue false

Phase-Field Modelling of Evolution of Compact Ordered Precipitates in Ternary Alloy Systems

Published online by Cambridge University Press:  11 February 2019

Sandeep Sugathan*
Affiliation:
Department of Materials Science & Metallurgical Engineering, Indian Institute of Technology Hyderabad
Saswata Bhattacharya
Affiliation:
Department of Materials Science & Metallurgical Engineering, Indian Institute of Technology Hyderabad
*
Get access

Abstract

Several technologically important alloys like Al-Li-Zr, Al-Li-Sc, Al-Sc-Zr, Al-Li-Sc-Zr, modified Inconel etc., exhibit compact precipitates in their microstructure. We present a phase-field model in two dimensions to study the morphological evolution of composite precipitates in ternary alloys. The model employs a modified regular solution description of the bulk free energy of the disordered matrix phase and ordered precipitates. Elastic strain energy of the three-phase system is described using Khachaturyan’s microelasticity theory. The temporal evolution of the spatially dependent field variables is determined by numerically solving coupled Cahn-Hilliard and Allen-Cahn equations for composition and order parameter fields, respectively. We systematically vary the misfit strains, alloy chemistry and mobilities of the diffusing species to study their effect on the development of compact precipitates. Compact core-shell morphology destabilizes when the precipitate phases have misfit strains of opposite signs with the matrix phase although the relative interfacial energies between the phases satisfy Cahn’s spontaneous wetting condition. Thus, the stability of “monodisperse” core-shell microstructures is determined by the interplay between the relative interfacial energies and elastic interactions between the phases. Further, our simulations show that low solute mobility within the core leads to sluggish coarsening of the compact particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beresina, A., Kolobnev, N., Chuistov, K., Kotko, A. and Molebny, O., presented at the Materials Science Forum, 2002 (unpublished).Google Scholar
Gayle, F. W. and Vander Sande, J. B., Scr. Mater. 18 (5), 473-478 (1984).Google Scholar
Makin, P. L. and Ralph, B., J. Mater. Sci. 19 (12), 3835-3843 (1984).CrossRefGoogle Scholar
Vecchio, K. S. and Williams, D. B., Acta Metall. 35 (12), 2959-2970 (1987).CrossRefGoogle Scholar
Radmilovic, V., Ophus, C., Marquis, E. A., Rossell, M. D., Tolley, A., Gautam, A., Asta, M. and Dahmen, U., Nat. Mater. 10 (9), 710 (2011).10.1038/nmat3077CrossRefGoogle Scholar
Cozar, R. and Pineau, A., Met. Trans. 4 (1), 47-59 (1973).CrossRefGoogle Scholar
He, J., Han, G., Fukuyama, S. and Yokogawa, K., Acta Mater. 46 (1), 215-223 (1998).CrossRefGoogle Scholar
Coates, D. E., Met. Trans. 3 (5), 1203-1212 (1972).CrossRefGoogle Scholar
Morral, J. E. and Purdy, G. R., Scr. Mater. 30 (7) (1994).Google Scholar
Fährmann, M., Fratzl, P., Paris, O., Fährmann, E. and Johnson, W. C., Acta Mater . 43 (3), 1007-1022 (1995).CrossRefGoogle Scholar
Kuehmann, C. J. and Voorhees, P. W., Metall. Mater. Trans. A. 27 (4), 937-943 (1996).CrossRefGoogle Scholar
Hoyt, J. J., Acta Mater . 47 (1), 345-351 (1998).CrossRefGoogle Scholar
Chen, L. Q., Annu. Rev. Mater. Res. 32 (1), 113-140 (2002).CrossRefGoogle Scholar
Moelans, N., Blanpain, B. and Wollants, P., Calphad 32 (2), 268-294 (2008).CrossRefGoogle Scholar
Steinbach, I., Modell. Simul. Mater. Sci. Eng. 17 (7), 073001 (2009).CrossRefGoogle Scholar
Chen, L. Q. and Wang, Y., Jom. 48 (12), 13-18 (1996).CrossRefGoogle Scholar
Wang, Y. and Li, J., Acta Mater . 58 (4), 1212-1235 (2010).CrossRefGoogle Scholar
Zhou, N., Lv, D., Zhang, H., McAllister, D., Zhang, F., Mills, M. and Wang, Y., Acta Mater. 65, 270-286 (2014).CrossRefGoogle Scholar
Koyama, T., Sci. Technol. Adv. Mater. 9 (1), 013006 (2008).CrossRefGoogle Scholar
Chen, L. Q., Acta Metall . 42 (10), 3503-3513 (1994).CrossRefGoogle Scholar
Bhattacharyya, S. and Abinandanan, T. A., Bull. Mater. Sci. 26 (1), 193-197 (2003).CrossRefGoogle Scholar
Ghosh, S., Mukherjee, A., Abinandanan, T.A. and Bose, S., Phys. Chem. Chem. Phys. 19 (23), 15424-15432 (2017).CrossRefGoogle Scholar
Eyre, D. J., SIAM J. Appl. Math. 53 (6), 1686-1712 (1993).CrossRefGoogle Scholar
Chen, L. Q., Scr. Metall. 29 (5) (1993).Google Scholar
Cogswell, D. A. and Carter, W. C., Phys. Rev. E. 83 (6), 061602 (2011).CrossRefGoogle Scholar
Steinbach, I., Pezzolla, F., Nestler, B., Seeßelberg, M., Prieler, R., Schmitz, G. J. and Rezende, J. L., Physica D. 94 (3), 135-147 (1996).CrossRefGoogle Scholar
Moelans, N., Arch. Metall. Mater. 53 (4), 1149-1156 (2008).Google Scholar
Cahn, J. W., J. Chem. Phys. 66 (8), 3667-3672 (1977).CrossRefGoogle Scholar
Khachaturyan, A. G., Theory of structural transformations in solids. (Courier Corporation, 2013) p. 198.Google Scholar
Zhu, J., Chen, L. Q., Shen, J. and Tikare, V., Phys. Rev. E. 60 (4), 3564 (1999).CrossRefGoogle Scholar
Chen, L. Q. and Shen, J., Comput. Phys. Commun. 108 (2-3), 147-158 (1998).CrossRefGoogle Scholar