Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T07:10:51.205Z Has data issue: false hasContentIssue false

Performance of HfOx- and TaOx-based Resistive Switching Structures for Realization of Minimum and Maximum Functions

Published online by Cambridge University Press:  23 April 2018

Karol Fröhlich*
Affiliation:
Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 84104Bratislava, Slovakia
Ivan Kundrata
Affiliation:
Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 84104Bratislava, Slovakia
Michal Blaho
Affiliation:
Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 84104Bratislava, Slovakia
Marian Precner
Affiliation:
Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 84104Bratislava, Slovakia
Milan Ťapajna
Affiliation:
Institute of Electrical Engineering, SAS, Dúbravská cesta 9, 84104Bratislava, Slovakia
Martin Klimo
Affiliation:
University of Zilina, Department of InfoCom Networks, 01026Žilina, Slovakia
Ondrej Šuch
Affiliation:
University of Zilina, Department of InfoCom Networks, 01026Žilina, Slovakia
Ondrej Škvarek
Affiliation:
University of Zilina, Department of InfoCom Networks, 01026Žilina, Slovakia
*
Get access

Abstract

In our contribution we present and analyze implementation of the resistive switching structures for logic application based on Zadeh fuzzy logic. Resistive switching structures based on HfOx and TaOx were connected in an anti-serial configuration (complementary resistive switch). The complementary resistive switches integrated into logic circuit for Min-Max function implementation were analyzed using quasi-static voltage sweeps. We have shown that the accuracy of the Min/Max function determination depends on the ratio of the high and low resistivity states of the single switches. Determination of the Min/Max values is relevant only above the threshold voltage of the resistive structures. Reproducibility of the Min/Max function constructed from the resistive switching structures is demonstrated.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Philip Wong, H.-S., Lee, H.-Y, Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S, Lee, B.. Chen, F. T. and Tsai, M.-J., Proc. IEEE 100, 1951 (2012).CrossRefGoogle Scholar
Linn, E., Rosezin, R., Kügeler, C. and Waser, R., Nat. Mater. 9, 403 (2010).CrossRefGoogle Scholar
Borghetti, J., Snider, G. S., Kuekes, P. J., Yang, J. J., Stewart, D. R., Stanley, R.S., Nature 464, 873 (2010).CrossRefGoogle Scholar
Gao, S., Zeng, F., Wang, M., Wang, G., Song, C. Pan, F., Scientific Reports 5, 15467 (2015).CrossRefGoogle Scholar
Siemon, A.. Breuer, T., Aslam, N., Ferch, S., Kim, W., van den Hurk, J., Rana, V., Hoffman-Eifert, S., Waser, R., Menzel, S., Linn, E., Adv. Funct. Mater. 25, 6414 (2015).CrossRefGoogle Scholar
Klimo, M., Such, O., “Memristors can implement fuzzy logic”. Available at https://arxiv.org/abs/1110.2074.Google Scholar
Zadeh, L. A., Information and Control 8, 338 (1965).CrossRefGoogle Scholar
Frátrik, M., Klimo, M., Šuch, O. and Škvarek, O., Phys. Stat. Sol. C 12, 233 (2015).Google Scholar
Breuer, T., Nielen, L., Roesgen, B., Waser, R., Rana, V. and Linn, E., Scientific Reports 6, 23967 (2016).CrossRefGoogle Scholar
Jančovič, P., Hudec, B., Dobročka, E., Dérer, J., Fedor, J., Fröhlich, K., Appl. Surf. Sci. 312, 112 (2014).CrossRefGoogle Scholar
Schmelzer, S., Linn, E., Böttger, U. and Waser, R., IEEE Electron. Dev. Lett. 34, 114 (2013).CrossRefGoogle Scholar