Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-02T22:22:05.717Z Has data issue: false hasContentIssue false

Performance Degradation Due to Nonlocal Heating Effects in Resistive ReRAM Memory Arrays

Published online by Cambridge University Press:  13 June 2019

M. Al-Mamun
Affiliation:
Bradley Department of Electrical & Computer Engineering, Virginia Tech, Blacksburg, Virginia24061, USA
M. Orlowski*
Affiliation:
Bradley Department of Electrical & Computer Engineering, Virginia Tech, Blacksburg, Virginia24061, USA
*
Get access

Abstract

Frequent switching of resistive memory cell may lead to a local accumulation of Joules heat in the device. Since the ReRAM cells are arranged in crossbar arrays with the two electrodes running perpendicular to each other, the heat generated in one device spreads via common electrode metal lines to the neighboring cells causing their performance degradation. Also cells that do not share any of the two electrodes (e.g. the diagonal array cells) with the hot device may also degrade provided the intermediate cells are set to an on-state establishing thus a continuous thermal conduction path between the heated and the probed device. It is found that the heat conduction along the active Cu electrode is more pronounced than that along the inert Pt electrode. Devices with Rh inert electrode performed better than those with Pt electrode due to better heat conductivity properties of Rh vs Pt. The heat dissipation is also found worse for a heated device with narrow and thin lines causing, however less degradation of more distant neighbor cells than for wide and thick metal lines. Finally, there is a trade-off between dissipating the heat quickly form the heated device to increase its maximum switching cycles and the heat exposure of the neighboring devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Valov, I., Waser, R., Jameson, J. R., and Kozicki, M. N., Nanotechnol., 22, 254003, 2011.CrossRefGoogle Scholar
Kang, Y., Liu, T., Potnis, T., and Orlowski, M., ECS Solid State Letters, vol. 2(7) Q54Q57, 2013CrossRefGoogle Scholar
Liu, T., Verma, M., Kang, Y., and Orlowski, M. K., Appl. Phys. Lett., vol. 101(7), p. 073510, 2012.CrossRefGoogle Scholar
Celano, U., Goux, L., Degraeve, R., Fantini, A., Richard, O., Bender, H., Jurczak, M., Vandervorst, W., Nano Lett. 15, 7970–7875, 2015CrossRefGoogle Scholar
Hubbard, W., Kerelsky, A., Jasmin, G., White, E., Lodico, J., Meclenburg, M., Regan, B., Naono Lett. 15, 39833987, 2015CrossRefGoogle Scholar
Yu, S. and Wong, H.P.S, IEEE Trans. El. Dev. 58, 1352, 2011Google Scholar
Liu, Q., Sun, J., Lv, H., Long, S., Yin, K., Wang, N., li, Y., Sun, L., Liu, M., Adv. Mater. 24, 18441849, 2012CrossRefGoogle Scholar
Dirkmann, S., Ziegler, M., Hansen, M., Kohlstedt, H., Trieschmann, J., Mussenbrock, T., J. Appl. Phys. 118, 214501, 2015CrossRefGoogle Scholar
Yang, Y., Gao, P., Li, L., Pan, X., Tappertzhofen, S., Choi, S., Waser, R., Valov, I., Lu, W., Nat. Comm. 5, 4232, 2014CrossRefGoogle Scholar
Yang, Y., Gao, P., Gaba, S., Chang, T., Pan, X., Lu, W., Nat. Comm. 3, 732, 2012CrossRefGoogle Scholar
Ghosh, G., Orlowski, M., IEEE Trans. El. Dev. vol. 62(9) p. 2850–6, 2015
CrossRefGoogle Scholar
Ghosh, G., Orlowski, M., Curr. Appl. Phys. vol. 15, 11241129, 2015
CrossRefGoogle Scholar
Sun, P., Li, L., Lu, ND, Li, YT, Wang, M., Xie, HW, Liu, S., Liu, M., J. Comp. Electr., vol. 13(2), p.432438, 2014CrossRefGoogle Scholar
Liu, T., Kang, Y., El-Helw, S., Potnis, T., and Orlowski, M., Jap. Jour. Appl. Phys. 52, 084202, 2013.CrossRefGoogle Scholar
Mickel, P., Lohn, A., Marinella, M., Appl. Phys. Lett. 105, 053503, 2014CrossRefGoogle Scholar
Mickel, P., Lohn, A., James, C., Marinella, M., Adv. Mat. 26, 44864490, 2014CrossRefGoogle Scholar
Uenema, M., Ishikawa, Y., Uraoka, Y., Appl. Phys. Lett. 107, 073503, 2015CrossRefGoogle Scholar
Sato, Y., Kinoshita, K., Aoki, M., Sugiyama, Y., Appl. Phys. Lett. 90, 033503, 2017CrossRefGoogle Scholar
Al Mamun, M. and Orlowski, M., (2019) to be publishedGoogle Scholar