Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T09:53:18.716Z Has data issue: false hasContentIssue false

Optical design of perovskite solar cells for applications in monolithic tandem configuration with CuInSe2 bottom cells

Published online by Cambridge University Press:  25 May 2018

Ramez H. Ahangharnejhad
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States Wright Center for Photovoltaics Innovation and Commercialization, Toledo, Ohio 43606, United States
Zhaoning Song
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
Adam B. Phillips*
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States Wright Center for Photovoltaics Innovation and Commercialization, Toledo, Ohio 43606, United States
Suneth C. Watthage
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
Zahrah S. Almutawah
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
Dhurba R Sapkota
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
Prakash Koirala
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
Robert W. Collins
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
Yanfa Yan
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States
Michael J. Heben
Affiliation:
Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, United States Wright Center for Photovoltaics Innovation and Commercialization, Toledo, Ohio 43606, United States
*
Get access

Abstract:

Monolithic integrated thin film tandem solar cells consisting of a high bandgap perovskite top cell and a low bandgap thin film bottom cell are expected to reach higher power conversion efficiencies (PCEs) with lower manufacturing cost and environmental impacts than the market-dominant crystalline silicon photovoltaics. There have been several demonstrations of 4-terminal and 2-terminal perovskite tandem devices with CuInGaSe2 (CIGS) or CuInSe2 (CIS) and, similar to the other tandem structures, the optimization of this device relies on optimal choice for the perovskite bandgap and thickness. Therefore, further advancement will be enabled by tuning the perovskite absorber to maximize the photocurrent limited by the current match condition. Here, we systematically study the optical absorption and transmission of perovskite thin films with varying absorber band gap. Based on these results, we model the photocurrent generations in both perovskite and CIS subcells and estimate the performances of projected tandem devices by considering the ideally functioning perovskite and CIS device. Our results show that for perovskite layers with 500 nm thickness the optimal bandgap is around 1.6 eV. With these configurations, PCEs above 20% could be achieved by monolithically integrated perovskite/CIS tandem solar cells. Also by modelling the absorption at every layer we calculate the quantum efficiency at each subcell in addition to tracking optical losses.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

De Vos, A., J. Phys. D 13, 839846 (1980).CrossRefGoogle Scholar
Essig, S., Allebé, C., Remo, T., Geisz, J. F., Steiner, M. A., Horowitz, K., Barraud, L., Ward, J. S., Schnabel, M., Descoeudres, A., Young, D. L., Woodhouse, M., Despeisse, M., Ballif, C. and Tamboli, A., Nat. Energy 2, 17144 (2017).CrossRefGoogle Scholar
Werner, J., Weng, C. H., Walter, A., Fesquet, L., Seif, J. P., De Wolf, S., Niesen, B. and Ballif, C., J. Phys. Chem. Lett., 7, 161166 (2016).CrossRefGoogle Scholar
Werner, J., Nogay, G., Sahli, F., Yang, C. T., Christmann, G., Walter, A., Kamino, B., Fiala, P., Nicolay, S., Jeangros, Q., Niesen, B. and Ballif, C., ACS Energy Lett. 12 (1), 876883 (2018).Google Scholar
Celik, I., Phillips, A. B., Song, Z., Yan, Y., Ellingson, R. J., Heben, M. J. and Apul, D., Energy Environ. Sci. 10, 18741884 (2017).CrossRefGoogle Scholar
Celik, I., Philips, A. B., Song, Z., Yan, Y., Ellingson, R. J., Heben, M. J. and Apul, D., IEEE J. Photovoltaics 8, 305309 (2018).CrossRefGoogle Scholar
Song, Z., McElvany, C. L., Phillips, A. B., Celik, I., Krantz, P. W., Watthage, S. C., Liyanage, G. K., Apul, D. and Heben, M. J., Energy Environ. Sci 10, 12971305 (2017).CrossRefGoogle Scholar
Zhao, D., Yu, Y., Wang, C., Liao, W., Shrestha, N., Grice, C. R., Cimaroli, A. J., Guan, L., Ellingson, R. J., Zhu, K., Zhao, X., Xiong, R.-G. and Yan, Y., Nat. Energy 2, 17018 (2017).CrossRefGoogle Scholar
Lim, Y. S., Kwon, H. S., Jeong, J., Kim, J. Y., Kim, H., Ko, M. J., Jeong, U. and Lee, D. K., ACS Appl. Mater. Interfaces 6, 259267 (2014).CrossRefGoogle Scholar
Yuan, D.-X., Yuan, X.-D., Xu, Q.-Y., Xu, M.-F., Shi, X.-B., Wang, Z.-K. and Liao, L.-S., Phys. Chem. Chem. Phys. 17, 2665326658 (2015).CrossRefGoogle Scholar
You, J., Meng, L., Song, T., Guo, T., Yang, Y. M., Chang, W., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y. and De Marco, N., Yang Yang, Nat. Nanotechnol. 11, 7581 (2016).CrossRefGoogle Scholar
Zhao, D., Wang, C., Song, Z., Yu, Y., Chen, C., Zhao, X., Zhu, K. and Yan, Y., ACS Energy Lett. 3 (2), 305306 (2018).CrossRefGoogle Scholar
Heo, J. H., Han, H. J., Kim, D., Ahn, T. K. and Im, S. H., Energy Environ. Sci. 8, 16021608 (2015).CrossRefGoogle Scholar
Heo, J. H., Im, S. H., Noh, J. H., Mandal, T. N., Lim, C. S., Chang, J. A., Lee, Y. H., Kim, H. J., Sarkar, A., Nazeeruddin, M. K., Grätzel, M. and Il Seok, S., Nat. Photonics 7, 486491 (2013).CrossRefGoogle Scholar
Ibdah, A. R. A., Koirala, P., Aryal, P., Pradhan, P., Heben, M. J., Podraza, N. J., Marsillac, S. and Collins, R. W., J. Energy Chem. 2095 4956, (2017).Google Scholar
Konig, T. A. F., Ledin, P. A., Kerszulis, J., Mahmoud, M. A., El-sayed, M. A., Reynolds, J. R. and V Tsukruk, V., ACS Nano 8, 61826192 (2014).CrossRefGoogle Scholar
Pettersson, L. A. A., Roman, L. S. and Inganäs, O., J. Appl. Phys. 86, 487496 (1999).CrossRefGoogle Scholar
Rodríguez-de Marcos, L. V., Larruquert, J. I., Méndez, J. A., Aznárez, J. A., Opt. Exp. 7 (3), 9891006 (2017).CrossRefGoogle Scholar
Gasiorowski, J., Menon, R., Hingerl, K., Dachev, M. and Sariciftci, N. S., Thin Solid Films 536, 211215 (2013).CrossRefGoogle Scholar
Chen, C.-W., Hsiao, S.-Y., Chen, C.-Y., Kang, H.-W., Huang, Z.-Y. and Lin, H.-W., J. Mater. Chem. A 3, 91529159 (2015).CrossRefGoogle Scholar
Burkhard, B. G. F., Hoke, E. T. and Mcgehee, M. D., Adv. Mater. 22, 32933297 (2010).CrossRefGoogle Scholar
Song, Z., Werner, J., Shrestha, N., Sahli, F., De Wolf, S., Niesen, B., Watthage, S. C., Phillips, A. B., Ballif, C., Ellingson, R. J. and Heben, M. J., J. Phys. Chem. Lett. 7, 51145120 (2016).CrossRefGoogle Scholar
Kemp, K. W., Labelle, A. J., Thon, S. M., Ip, A. H., Kramer, I. J., Hoogland, S. and Sargent, E. H., Adv. Energy Mater. 3, 917922 (2013).CrossRefGoogle Scholar
Kandil, K. M., Altouq, M. S., Al-asaad, A. M., Alshamari, L. M., Kadad, I. M. and Ghoneim, A. A., Smart Grid Renew. Energy 2, 375387 (2011).CrossRefGoogle Scholar
Uhl, A. R., Yang, Z., Jen, A. K.-Y. and Hillhouse, H. W., J. Mater. Chem. A 5, 32143220 (2017).CrossRefGoogle Scholar