Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T09:18:25.489Z Has data issue: false hasContentIssue false

One-Step Synthesis of Co3O4 Thin Film by Reactive Spray Deposition Technology for Efficient Electrochemical Water Splitting

Published online by Cambridge University Press:  16 January 2018

Yang Wang*
Affiliation:
University of Connecticut, Storrs, CT06269, USA
Junkai He
Affiliation:
University of Connecticut, Storrs, CT06269, USA
Radenka Maric
Affiliation:
University of Connecticut, Storrs, CT06269, USA
*
(Email: [email protected])
Get access

Abstract

Efficient catalysts for the oxygen evolution reaction (OER) are widely applied in fuel cells and rechargeable lithium air batteries. It is desirable but challenging to achieve comparable activity to that of the noble-metal catalyst with non-precious metal catalyst. Highly active Co3O4 thin film electrodes have been successfully synthesized by a rapid one-step flame combustion synthesis method called Reactive Spray Deposition Technology. X-ray diffraction confirms the absence of any impurity phase with this synthesis process. The detailed morphology of the Co3O4 thin film is investigated with scanning electron microscopy and transmission electron microscopy. Cyclic voltammetry is used to investigate the redox activity of Co3+ to Co4+ which is crucial for the OER performance. The as-prepared Co3O4 catalyst demonstrates promising activity for OER, with an overpotential of 399 mV (at 10 mA cm-2) for OER.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Symes, M.D., Cronin, L., Nat. chem. 5, 403409 (2013).Google Scholar
Gong, M., Li, Y., Wang, H., Liang, Y., Wu, J.Z., Zhou, J., Wang, J., Regier, T., Wei, F., Dai, H., J. Am. Chem. Soc. 135, 84528455 (2013).Google Scholar
Ma, T.Y., Dai, S., Jaroniec, M., Qiao, S.Z., Angew. Chem., Int. Ed. 53, 72817285 (2014).Google Scholar
Suen, N.T., Hung, S.F., Quan, Q., Zhang, N., Xu, Y.J., Chen, H.M., Chem. Soc. Rev. 46, 337365 (2017).Google Scholar
Frame, F.A., Townsend, T.K., Chamousis, R.L., Sabio, E.M., Dittrich, T., Browning, N.D., Osterloh, F.E., J. Am. Chem. Soc. 133, 72647267 (2011).CrossRefGoogle Scholar
Fang, Y.H., Liu, Z.P., J. Am. Chem. Soc. 132, 1821418222 (2010).CrossRefGoogle Scholar
Lee, Y., Suntivich, J., May, K.J., Perry, E.E., Shao-Horn, Y., J. Phys. Chem. Lett. 3, 399404 (2012).Google Scholar
Zhang, J., Wang, G., Liao, Z., Zhang, P., Wang, F., Zhuang, X., Zschech, E., Feng, X., Nano Energy, 40, 2733 (2017).CrossRefGoogle Scholar
Fayette, M., Nelson, A., Robinson, R.D., J. Mater. Chem. A 3, 42744283 (2015).Google Scholar
Friebel, D., Bajdich, M., Yeo, B.S., Louie, M.W., Miller, D.J., Casalongue, H.S., Mbuga, F., Weng, T., Nordlund, D., Sokaras, D., Alonso-Mori, R., Bell, A.T., Nilsson, A., Phys. Chem.Chem. Phys. 15, 1746017567 (2013).Google Scholar
Zhang, Y.X., Guo, X., Zhai, X., Yan, Y.M., Sun, K.N., J. Mater. Chem. A 3, 17611768 (2015).Google Scholar
McCrory, C.C.L., Jung, S., Peters, J.C., Jaramillo, T.F.J., Am. Chem. Soc. 135, 1697716987 (2013).Google Scholar
Esswein, A.J., McMurdo, M.J., Ross, P.N., Bell, A.T., Tilley, T.D., J. Phys. Chem. C 113, 1506815072 (2009).CrossRefGoogle Scholar
Estrada, W., Fantini, M.C.A., de Castro, S.C., Polo daFonseca, C.N., Gorenstein, A., J. Appl. Phys. 74, 58355841 (1993).Google Scholar
Donders, M.E., Knoops, H.C.M., van, M.C.M., Kessels, W.M.M., Notten, P.H.L., J. Electrochem. Soc. 158, G92G96 (2011).Google Scholar
Castro, E.B., Gervasi, C.A., Int. J. Hydrogen EnergY 25, 11631170 (2000).CrossRefGoogle Scholar
Roller, J.M., Kim, S., Kwak, T., Yu, H., Maric, R., J. Mater. Sci. 52, 9391 (2017).Google Scholar
Roller, J.M., Maric, R., J. Therm. Spray Technol. 24, 1529 (2015).Google Scholar
Jain, R., Wang, Y., Maric, R., J Nanotech Smart Mater, 1, 17 (2014).Google Scholar
Maric, R., Roller, J., Neagu, R., J. Therm. Spray Technol. 20, 696 (2011).CrossRefGoogle Scholar
Maric, R., Vanderhoek, TPK., Roller, J.M., US Patent App. 370 (2008).Google Scholar
Gerken, J.B., McAlpin, J.G., Chen, J.Y.C., Rigsby, M.L., Casey, W.H., Britt, R.D., Stahl, S.S., J. Am. Chem. Soc. 133, 1443114442 (2011).Google Scholar
Kim, T.W., Woo, M.A., Regis, M., Choi, K.S., J. Phys. Chem. Lett. 5, 23702374 (2014).CrossRefGoogle Scholar
Liang, Y., Wang, H., Zhou, J., Li, Y., Wang, J., Regier, T., Dai, H., J. Am. Chem. Soc. 134, 35173523 (2012).Google Scholar
Lai, Y., Li, Y., Jiang, L., Xu, W., Lv, X., Li, J., Liu, Y., J. Electroanal. Chem. 671,1623 (2012).CrossRefGoogle Scholar
Gao, M.R., Xu, Y.F., Jiang, J., Zheng, Y.R., Yu, S.H.., J. Am. Chem. Soc. 134, 29302933 (2012).CrossRefGoogle Scholar
Yeo, B.S., Bell, A.T., J. Am.Chem. Soc. 133, 55875593 (2011).Google Scholar
Liu, X., Chang, Z., Luo, L., Xu, T., Lei, X., Liu, J., Sun, X., Chem. Mater. 26, 18891895 (2014).Google Scholar
Smith, R.D., Prévot, M.S., Fagan, R.D., Zhang, Z., Sedach, P.A., Siu, M.K.J, Trudel, S., Berlinguette, C.P., Science, 1233638 (2013).Google Scholar
Prabu, M., Ketpang, K., Shanmugam, S., Nanoscale, 6, 31733181 (2014).Google Scholar
Seitz, L.C., Dickens, C.F., Nishio, K., Hikita, Y., Montoya, J., Doyle, A., Kirk, C., Vojvodic, A., Hwang, H.Y., Norskov, J.K., Jaramillo, T.F., Science, 353, 10111014 (2016).CrossRefGoogle Scholar
Jung, S., McCrory, C.C., Ferrer, I.M., Peters, J.C., Jaramillo, T.F., J. Mater. Chem. A 4, 30683076 (2016).Google Scholar
Koza, J.A., He, Z., Miller, A.S., Switzer, J.A., Chem. Mater. 24, 35673573 (2012).Google Scholar
Lu, X., Zhao, C., Nat. Commun. 6, 6616 (2015).Google Scholar