Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T06:06:46.358Z Has data issue: false hasContentIssue false

Novel Antimicrobial Surfaces to Defeat COVID-19 Transmission

Published online by Cambridge University Press:  01 December 2020

Rodica Cristescu
Affiliation:
National Institute for Lasers, Plasma & Radiation Physics, Lasers Department, Bucharest-Magurele, Romania
Roger J. Narayan*
Affiliation:
Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
Douglas B. Chrisey
Affiliation:
Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, USA
*
Corresponding author. E-mail: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Antimicrobial surface coatings function as a contact biocide and are extensively used to prevent the growth and transmission of pathogens on environmental surfaces. Currently, scientists and researchers are intensively working to develop antimicrobial, antiviral coating solutions that would efficiently impede/stop the contagion of COVID-19 via surface contamination. Herein we present a flavonoid-based antimicrobial surface coating fabricated by laser processing that has the potential to eradicate COVID-19 contact transmission. Quercetin-containing coatings showed better resistance to microbial colonization than antibiotic–containing ones.

Type
Articles
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

References

Xu, S. and Li, Y., The Lancet 395 (10233), 1321-1322 (2020).Google Scholar
World Coronavirus Statistics (2020). Available at: https://www.worldometers.info/coronavirus/ (accessed 17 September 2020).Google Scholar
Pushpakom, S., Iorio, F., Eyers, P.A., Escott, K.J., Hopper, S., Wells, A., Doig, A., Guilliams, T., Latimer, J., McNamee, C., and Norris, A., Nat. Rev. Drug Discov. 18, 41 (2019).Google Scholar
Abian, O., Ortega-Alarcon, D., Jimenez-Alesanco, A., Ceballos-Laita, L., Vega, S., Reyburn, H.T., Rizzuti, B., and Velazquez-Campoy, A., Int. J. Biol. Macromol. 164, 1693 (2020).Google Scholar
Rawson, T.M, Ming, D., Ahmad, R., More, L.S.P., and Holmes, A.H., Nat. Rev. Microbiol. 18, 409 (2020).Google Scholar
Spitzer, M., Robbins, N., and Wright, G.D., Virulence 8 (2), 169-185 (2017)Google Scholar
Tyers, M. and Wright, G.D., Nat. Rev. Microbiol. 17, 141155 (2019).CrossRefGoogle Scholar
McGill, R.A. and Chrisey, D.B., Method of producing a film coating by matrix assisted pulsed laser deposition, U.S. Patent No. 6 025 036 (15 February 2000)Google Scholar
Chrisey, D.B., McGill, R.A., Horwitz, J.S., Pique, A., Ringeisen, B.R., Bubb, D.M., and Wu, P.K., Chem. Rev. 103, 553 (2003).Google Scholar
Farha, M.A and Brown, E.D, Nat. Microbiol. 4, 565 (2019).Google Scholar
Cristescu, R., Surdu, A.V, Grumezescu, A.M., Oprea, A.E., Trusca, R., Vasile, O., Dorcioman, G., Visan, A., Socol, G., Mihailescu, I.N., Mihaiescu, D., Enculescu, M., Chifiriuc, M.C., Boehm, R.D., Narayan, R.J., and Chrisey, D.B., Appl. Surf. Sci. 336, 234 (2015).Google Scholar
Cristescu, R., Visan, A., Socol, G., Surdu, A.V., Oprea, A.E., Grumezescu, A.M., Chifiriuc, M.C., Boehm, R.D., Yamaleyeva, D., Taylor, M., Narayan, R.J., and Chrisey, D.B., Appl. Surf. Sci. 374, 290 (2016).Google Scholar
Yu, Q., Wu, Z. and Chen, H., Acta Biomater. 16 (2015) 1-13.Google Scholar
Lazar, V. and Chifiriuc, C.M., Roum. Arch. Microbiol. Immunol. 69 (2) 95-107 (2010).Google Scholar
Yuan, L., Yu, Q., Li, D., and Chen, H., Macromol. Biosci. 11, 1031 (2011).CrossRefGoogle Scholar
Negut, I., Visan, A.I., Popescu, C.E., Cristescu, R., Ficai, A., Grumezescu, A.M., Chifiriuc, M.C., Boehm, R.D., Yamaleyeva, D., Taylor, M., Narayan, R.J., and Chrisey, D.B., Appl. Sci. 9 (4), 786-798 (2019).Google Scholar
Mortale, S.P. and Karuppayil, S.M., Am. J. Clin. Microbiol. Antimicrob. 1 (5), 1022 (2018).Google Scholar
Andrew, S., Hitchcock, C.A., and Dorr, P.K., Antifungal compositions comprising voriconazole and trovafloxacin or prodrugs thereof, European Patent No. EP 0 982 031 A2 (1 March 2000)Google Scholar
Sun, L., Liao, K., Li, Y., Zhao, L., Liang, S., Guo, D., Hu, J., and Wang, D., J Nanosci. Nanotechnol. 16 (3), 2325-2335 (2016).Google Scholar
Gainer, K. Global Markets for Drug-Device Combinations (PHM045D), BCC Research LLC, Wellesley, MA, 2015.Google Scholar
Lehr, P. Global Markets for Rapid Medical Diagnostic Kits (HLC007H). Wellesley: BCC Research; 2013.Google Scholar
Elder, M. Market Research Report. Point of Care Diagnostics (HLC043C). Wellesley: BCC Research; 2012.Google Scholar