Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T16:55:56.826Z Has data issue: false hasContentIssue false

Non-vacuum Preparation of wse2 Thin Films via the Selenization of Hydrated Tungsten Oxide Prepared using Chemical Solution Methods

Published online by Cambridge University Press:  21 May 2018

Christopher L. Exstrom*
Affiliation:
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE68849-1150,, U.S.A.
Scott A. Darveau
Affiliation:
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE68849-1150,, U.S.A.
Megan E. Falconer
Affiliation:
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE68849-1150,, U.S.A.
Jessica R. Blum
Affiliation:
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE68849-1150,, U.S.A.
Whitney M. Colling
Affiliation:
Department of Chemistry, University of Nebraska at Kearney, Kearney, NE68849-1150,, U.S.A.
Natale J. Ianno
Affiliation:
Department of Electrical & Computer Engineering, University of Nebraska-Lincoln, Lincoln, NE68588-0511, U.S.A.
*
Get access

Abstract

It is known that tungsten oxide may be reacted with selenium sources to form WSe2 but literature reports include processing steps that involve high temperatures, reducing atmospheres, and/or oxidative pre-treatments of tungsten oxide. In this work, we report a non-vacuum process for the fabrication of compositionally high quality WSe2 thin films via the selenization of tungsten oxide under milder conditions. Tungsten source materials were various hydrated WO3 and WO2.9 compounds that were prepared using chemical solution techniques. Resulting films were selenized using a two-stage heating profile (250 °C for 15 minutes and 550 °C for 30 minutes) under a static argon atmosphere. Effects of the starting tungsten oxide phase on WSe2 formation after single and double selenization cycles were investigated using Raman spectroscopy and X-ray diffraction (XRD). After two selenization cycles, hydrated WO3 was converted to (002)-oriented WSe2 that exhibits well-resolved peaks for E12g and A1g phonon modes. Only a single selenization cycle was required to convert amorphous WO2.9 to WSe2. All selenizations in this work were achieved in non-reducing atmospheres and at lower temperatures and shorter times than any non-laser-assisted processes reported for WO3-to-WSe2 conversions.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wadia, C, Alivastos, A.P., and Kammen, D.M., Environ. Sci. Technol. 43, 2072 (2009).CrossRefGoogle Scholar
Jäger-Waldau, A., Lux-Steiner, M. Ch., and Bucher, E., Solid State Phen. 37-38, 479 (1994).CrossRefGoogle Scholar
Jäger-Waldau, A., and Bucher, E., Thin Solid Films 200, 157 (1991).CrossRefGoogle Scholar
Vogt, M., Lux-Steiner, M. Ch., Dolatzoglou, Ρ., and Bucher, E., presented at the 1988 Photovoltaic Solar Energy Conference, Florence, Italy (unpublished).Google Scholar
Ma, Q., Kyureghian, H., Banninga, J.D., and Ianno, N.J., Mater. Res. Soc. Symp. Proc. 1670, San Francisco, CA, 2014, mrss14-1670-e01-02 doi:10.1557/opl.2014.739.Google Scholar
Pouzet, J., Bernede, J. C., Khellil, A., Essaidi, H., Benhida, S., Thin Solid Films 208, 259 (1992).CrossRefGoogle Scholar
Chen, Y.-Z., Medina, H., Su, T.-Y., Li, J.-G., Cheng, K.-Y., Chiu, P.-W., and Chueh, Y.-L., ACS Nano 9, 4346 (2015)CrossRefGoogle Scholar
Campbell, P.M., Tarasov, A., Joiner, C.A., Tsai, M.-Y., Pavlidis, G., Graham, S., Ready, W.J., and Vogel, E.M., Nanoscale 8, 2268 (2006).CrossRefGoogle Scholar
Huang, J.-K., Pu, J., Hsu, C.-L., Chiu, M.-H., Juang, Z.-Y., Chang, Y.-H., Chang, W.-H., Iwasa, Y., Takenobu, T., and Li, L.-J., ACS Nano 8, 923 (2014).CrossRefGoogle Scholar
Xu, K., Wang, F., Wang, Z, Zhan, X., Wang, Q., Cheng, Z., Safdar, M., and He, J., ACS Nano 8, 8468 (2014).CrossRefGoogle Scholar
Browning, P., Eichfeld, S., Zhang, K., Hossain, L., Lin, Y.-C., Wang, K., Lu, N., Waite, A.R., Voevodin, A.A., Kim, M., and Robinson, J., 2D Mater. 2, 014003 (2015)CrossRefGoogle Scholar
Chen, J., Zhou, W., Tang, W., Tian, B., Zhao, X., Xu, H., Liu, Y., Geng, D., Tan, S.J.R., Fu, W., and Loh, K.P., Chem. Mater. 28, 7194 (2016).CrossRefGoogle Scholar
Ullah, F., Sim, Y., Le, C.T., Seong, M.-J., Jang, J.I., Rhim, S.H., Khac, B.C.T., Chung, K.-H., Park, K., Lee, Y., Kim, K., Jeong, H.Y., and Kim, Y.S., ACS Nano 11, 8822 (2017).CrossRefGoogle Scholar
Lee, Y., Jeong, H., Park, Y.-S., Han, S., Noh, J., and Lee, J.S., Appl. Surf. Sci. 432, 170 (2018).CrossRefGoogle Scholar
Salitra, G., Hodes, G., Klein, E., and Tenne, R., Thin Solid Films 245, 180 (1994).CrossRefGoogle Scholar
Kim, H., Yun, S.J., Park, J.C., Park, M.H., Park, J.-H., Kim, K.K., and Lee, Y.H., Small 11, 2192 (2015).CrossRefGoogle ScholarPubMed
Najdoski, M.Z. and Todorovski, T., Mater. Chem. Phys. 104, 483 (2007).CrossRefGoogle Scholar
Markelonis, A.R., Wang, J.S., Ullrich, B., Wai, C.M., Brown, G.J., Appl. Nanosci. 5, 457 (2015).CrossRefGoogle Scholar
Cheng, W., Baudrin, E., Dunn, B., and Zink, J., J. Mater. Chem. 11, 92 (2001).CrossRefGoogle Scholar
Kharade, R.R., Mane, S.R., Mane, R.M., Patil, P.S., Bhosale, P.N., J Sol-Gel Sci. Technol. 56, 177 (2010).CrossRefGoogle Scholar
Nayak, A.K., Lee, S., Choi, Y.I., Yoon, H.J., Sohn, Y., and Pradhan, D., ACS Sustainable Chem. Eng. 5, 2741 (2017).CrossRefGoogle Scholar
JCPDS card no. 351001.Google Scholar
Karuppasamy, A., Appl. Surf. Sci. 282, 77 (2013).CrossRefGoogle Scholar
Li, Z.-F., Zhang, B.-S., Z. Kristallographie 223, 191 (2008).Google Scholar
Patterson, A.L., Phys. Rev. 56, 978 (1939).CrossRefGoogle Scholar
Klejnot, O.J., Inorg. Chem. 4, 1668 (1965).CrossRefGoogle Scholar
Tonndorf, P., Schmidt, R., Böttger, P., Zhang, X., Börner, J., Liebig, A., Albrecht, M., Kloc, C., Gordau, O., Zahn, D.R.T., de Vasconcellos, S.M., Bratschitsch, R., Optics Express 21, 4908 (2013).CrossRefGoogle Scholar
Late, D.J., Shirodkar, S.N., Waghmare, U.V., Dravid, V.P., and Rao, C.N.R., ChemPhysChem 15, 1592 (2014).CrossRefGoogle Scholar
Schutte, W.J., de Boer, J.L., Jellinek, F., J. Solid State Chem. 70, 207 (1987).CrossRefGoogle Scholar
Sloan, J., Hutchison, J.L., Tenne, R., Feldman, Y., Tsirlina, T., and Homyonfer, M., J. Solid State Chem. 144, 100 (1999).CrossRefGoogle Scholar