Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T14:08:53.563Z Has data issue: false hasContentIssue false

Nanomechanical characterization of porous materials by atomic force microscopy

Published online by Cambridge University Press:  01 June 2018

D.L.P. Lacerda
Affiliation:
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Marques de São Vicente 225, Rio de Janeiro, 22453-900, Rio de Janeiro, Brazil
F. Ptak
Affiliation:
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Marques de São Vicente 225, Rio de Janeiro, 22453-900, Rio de Janeiro, Brazil
R. Prioli*
Affiliation:
Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, Marques de São Vicente 225, Rio de Janeiro, 22453-900, Rio de Janeiro, Brazil
*
Get access

Abstract

Atomic force microscopy (AFM) and nanoindentation were used to characterize poly (methyl methacrylate) (PMMA) films with a wide distribution of pores. Pores with diameters ranging from tens of nanometers to few micrometers were measured by AFM and cross-section scanning electron microscopy (SEM). Atomic force acoustic microscopy (AFAM) mapping of the elastic modulus were correlated with the samples topography and pore distribution. The elastic moduli of the samples were additionally measured by nanoindentation.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Landau, L. D. and Lifshtz, E. M., “Theory of Elasticity”, 3a Ed. (Elsevier, 1986) pp. 87104.Google Scholar
Rybacki, E., Reinicke, A., Meier, T., Makasi, M., and Dresen, G., J. Pet. Sci. and Eng. 135, 702722 (2015).CrossRefGoogle Scholar
Rybacki, E., Meier, T., and Dresen, G., J. Pet. Sci. Eng. 144, 3958 (2016).CrossRefGoogle Scholar
Ulm, F.-J. and Abousleiman, Y., Acta Geotechnica 1, 7788 (2006).CrossRefGoogle Scholar
Ortega, J. A., Ulm, F.-J., and Abousleiman, Y., Geophysics 74, D65D84 (2009).CrossRefGoogle Scholar
Prasad, M., Kopycinska, M., Rabe, U., and Arnold, W., Geophys. Res. Lett. 29,131134 (2002).CrossRefGoogle Scholar
Eliyahu, M., Emmanuel, S., Day-Stirrat, R. J., and Macaulay, C. I., Mar. Pet. Geo. 59, 294304 (2015).CrossRefGoogle Scholar
Wilkinson, T.M., Zargari, S., Prasad, M., and Packard, C.E., J. Mater. Sci. 50, 10411049 (2015).CrossRefGoogle Scholar
Zargari, S., Wilkinson, T. M., Packard, C.E., and Prasad, M., Geophysics 81, M1M6 (2016).CrossRefGoogle Scholar
Ulm, F.-J., Vandamme, M., Bobko, C., Ortega, J. A., Tai, K., and Ortiz, C., J. Am. Ceram. Soc. 90, 26772692 (2007).CrossRefGoogle Scholar
Kariem, H., Pastrama, M.-I., Roohani-Esfahani, S. I., Pivonka, P., Zreiqat, H., and Hellmich, C., Mater. Sci. Eng.:C 46, 553564 (2015).CrossRefGoogle Scholar
Meier, T., and Solares, S. D., Nanoscale 8, 1767517685 (2016).CrossRefGoogle Scholar
Schneider, C. A., Rasband, W.S., and Eliceiri, K.W., Nat. Methods 9, 671675 (2012).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 15641583 (1992).CrossRefGoogle Scholar