Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T12:52:03.889Z Has data issue: false hasContentIssue false

Nanocomposites of Hydrophobized Cellulose Nanocrystals andPolypropylene

Published online by Cambridge University Press:  05 February 2016

Blake R. Teipel
Affiliation:
Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
Ryan J. Vano
Affiliation:
Essentium Materials LLC, 5880 Imperial Loop Dr., Ste 10, College Station, Texas 77845
Bryan S. Zahner
Affiliation:
Essentium Materials LLC, 5880 Imperial Loop Dr., Ste 10, College Station, Texas 77845
Elisa M. Teipel
Affiliation:
Essentium Materials LLC, 5880 Imperial Loop Dr., Ste 10, College Station, Texas 77845
I-Cheng Chen
Affiliation:
Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
Mustafa Akbulut*
Affiliation:
Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
*
*Phone: 979-847-8766. Fax: 979-845-6446.E-mail: [email protected]
Get access

Abstract

Cellulose nanocrystals (CNCs) are high-strength sustainable nanomaterials, theincorporation of which to a host polymer matrix can potentially lead tonanocomposites with superior mechanical properties. However, the mismatch insurface energy of CNCs and common structural polymers is a challenge that needsto be overcome to prevent the aggregation of CNCs and ensure the robustintegration of CNCs into a polymer matrix. Herein, we report an approachinvolving the functionalization of CNCs with maleated-anhydride polypropylene(MAPP) through diethylenetriamine (DETA) linkers to significantly enhance thecompatibility between CNCs and polypropylene. Polypropylene/modified CNCnanocomposites displayed 74% and 76% increase in elastic modulus in comparisonto neat polypropylene and polypropylene/untreated CNC nanocomposites,respectively. The tensile strength was also higher for nanocomposites withmodified CNC than neat polypropylene, as well as nanocomposites with untreatedCNCs. The tensile strength at 5.5% strain of polypropylene/modified CNCnanocomposites was 32% and 28% larger that of polypropylene andpolypropylene/untreated CNC nanocomposites, respectively. Finally, suchCNC-based nanocomposites have a lower density than many competitive systemsresulting in opportunities to propagate this environmentally-responsibletechnology to nanocomposites used in additive manufacturing, automotiveapplications, construction materials and consumer products.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Habibi, Y.; Lucia, L. A.; Rojas, O. J.: Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chemical Reviews 2010, 110, 34793500.Google Scholar
Padalkar, S.; Capadona, J. R.; Rowan, S. J.; Weder, C.; Won, Y.-H.; Stanciu, L. A.; Moon, R. J.: Natural Biopolymers: Novel Templates for the Synthesis of Nanostructures. Langmuir 2010, 26, 84978502.Google Scholar
Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J.: Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 39413994.CrossRefGoogle ScholarPubMed
Alamri, H.; Low, I. M.: Characterization of epoxy hybrid composites filled with cellulose fibers and nano-SiC. Journal of Applied Polymer Science 2012, 126, E221E231.Google Scholar
Cross, L., Schueneman, G., Mintz, E.: Polymer Matrix Nanocomposites via Forest Derived Nanomaterials. In TechConnect World Summit, Expo, and Showcase; U.S. Forest Service, 2012.Google Scholar
Eichhorn, S.; Dufresne, A.; Aranguren, M.; Marcovich, N.; Capadona, J.; Rowan, S.; Weder, C.; Thielemans, W.; Roman, M.; Renneckar, S.; Gindl, W.; Veigel, S.; Keckes, J.; Yano, H.; Abe, K.; Nogi, M.; Nakagaito, A.; Mangalam, A.; Simonsen, J.; Benight, A.; Bismarck, A.; Berglund, L.; Peijs, T.: Review: current international research into cellulose nanofibres and nanocomposites. Journal of Materials Science 2010, 45, 133.Google Scholar
Pullawan, T.; Wilkinson, A. N.; Eichhorn, S. J.: Influence of Magnetic Field Alignment of Cellulose Whiskers on the Mechanics of All-Cellulose Nanocomposites. Biomacromolecules 2012, 13, 25282536.CrossRefGoogle ScholarPubMed
Kloser, E.; Gray, D. G.: Surface Grafting of Cellulose Nanocrystals with Poly(ethylene oxide) in Aqueous Media. Langmuir 2010, 26, 1345013456.Google Scholar
Elazzouzi-Hafraoui, S.; Nishiyama, Y.; Putaux, J.-L.; Heux, L.; Dubreuil, F.; Rochas, C.: The Shape and Size Distribution of Crystalline Nanoparticles Prepared by Acid Hydrolysis of Native Cellulose. Biomacromolecules 2007, 9, 5765.Google Scholar
Teipel, B. R.; Grunlan, J.: Synergy in Epoxy Nanocomposites with Cellulose Nanocrystals and Boehmite. Green Materials 2014.Google Scholar
Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A.: Carbon Nanotubes–the Route Toward Applications. Science 2002, 297, 787792.Google Scholar
Ebbesen, T. W.; Ajayan, P. M.: Large-scale synthesis of carbon nanotubes. Nature 1992, 358, 220222.CrossRefGoogle Scholar
Geim, A. K.; Novoselov, K. S.: The rise of graphene. Nat Mater 2007, 6, 183191.CrossRefGoogle ScholarPubMed
Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S.: Graphene-based composite materials. Nature 2006, 442, 282286.Google Scholar
Klemm, D.; Kramer, F.; Moritz, S.; Lindström, T.; Ankerfors, M.; Gray, D.; Dorris, A.: Nanocelluloses: A New Family of Nature-Based Materials. Angewandte Chemie International Edition 2011, 50, 54385466.CrossRefGoogle ScholarPubMed
Gindl, W.; Keckes, J.: All-cellulose nanocomposite. Polymer 2005, 46, 1022110225.Google Scholar
Kinnane, C.; Such, G.; Caruso, F.: Tuning the Properties of Layer-by-Layer Assembled Poly(acrylic acid) Click Films and Capsules. Macromolecules 2011, 44, 11941202.Google Scholar
Brittain, W. J.; Minko, S.: A structural definition of polymer brushes. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45, 35053512.Google Scholar
Nelson, K.; Retsina, T.: Innovative nanocellulose process breaks the cost barrier. TAPPI JOURNAL 2014, 13, 1923.Google Scholar
Zhang, Z.; Wu, Q.; Song, K.; Ren, S.; Lei, T.; Zhang, Q.: Using Cellulose Nanocrystals as a Sustainable Additive to Enhance Hydrophilicity, Mechanical and Thermal Properties of Poly(vinylidene fluoride)/Poly(methyl methacrylate) Blend. ACS Sustainable Chemistry & Engineering 2015, 3, 574582.Google Scholar
Cui, L.; Paul, D. R.: Evaluation of amine functionalized polypropylenes as compatibilizers for polypropylene nanocomposites. Polymer 2007, 48, 16321640.Google Scholar
Ehrenstein, G.: Overview of selected polymeric materials. Polymeric Materials, Carl Hanser Verlag, Munich 2001, 241.Google Scholar
Iyer, K. A.; Torkelson, J. M.: Sustainable Green Hybrids of Polyolefins and Lignin Yield Major Improvements in Mechanical Properties When Prepared via Solid-State Shear Pulverization. ACS Sustainable Chemistry & Engineering 2015.Google Scholar