Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-28T02:04:21.962Z Has data issue: false hasContentIssue false

Morphology dependent optical properties of ZnO/SiNWs nanocomposites

Published online by Cambridge University Press:  16 May 2017

Aliaksandr Sharstniou
Affiliation:
Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki str., Minsk, Belarus.
Stanislau Niauzorau
Affiliation:
Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki str., Minsk, Belarus.
Eugene Chubenko
Affiliation:
Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki str., Minsk, Belarus.
Bruno P. Azeredo
Affiliation:
Arizona State University, The Polytechnic School, Mesa, AZ, USA.
Vitaly Bondarenko*
Affiliation:
Belarusian State University of Informatics and Radioelectronics, 6 P. Brovki str., Minsk, Belarus.
*
Get access

Abstract

Zinc oxide/silicon nanowires (ZnO/SiNWs) nanocomposites is a promising material for heterojunction solar cells. They combine the low-reflectivity of SiNWs, where photogenerated charge carriers are produced and harvested, and the high transparency of ZnO, which serves as a functional transparent conductive electrode. In this paper, we present a study of the anti-reflective properties of ZnO/SiNWs core-shell nanostructures. SiNWs were fabricated by a two-step metal-assisted chemical etching and coated with ZnO by electrochemical deposition. Particularly, the change in the specular reflectance of ZnO/SiNWs nanocomposites as a function of thermal annealing temperature under ambient atmosphere is investigated. First, it was shown that the reflectance in the wavelength range of 400-1000 nm of as-synthesized ZnO/SiNWs nanocomposites increases when compared to the bare SiNWs formed from Si wafers with resistivity of 0.3 and 12 Ω∙cm by an 0.51 % and 0.47 %, respectively. Second, it was found that annealed ZnO/SiNWs had a 0.26 % and 0.17 % lower reflectance in the wavelength range of 400-1000 nm than as-synthesized ZnO/SiNWs and yet higher than bare SiNWs. Potential causes such results are discussed in the context of existing literature.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Green, M. A., Emery, K., Hishikawa, Y., Warta, W. and Dunlop, E.D., Prog. Photovolt.: Res. Appl. 23, 19 (2015).CrossRefGoogle Scholar
Huang, Z., Geyer, N., Werner, P., de Boor, J., and Gosele, U., Adv. Mater. 23, 285308 (2011).CrossRefGoogle Scholar
Jia, G., Steglich, M., Still, I. and Falk, F., Sol. Energy Mater. Sol. Cells 96, 226230 (2012).CrossRefGoogle Scholar
Steglich, M., Bingel, A., Jia, G. and Falk, F., Sol. Energy Mater. Sol. Cells 103, 6268 (2012).Google Scholar
Wang, Z.L., J. Phys.: Condens. Matter 16, 829858 (2004)Google Scholar
Lupan, O., Shishiyanu, S., Ursaki, V., Khallaf, H., Chow, L., Shishiyanu, T., Sontea, V., Monaico, E. and Railean, S., Sol. Energy Mater. Sol. Cells 93, 14171422 (2009).Google Scholar
Pietruszka, R., Schifano, R., Krajewski, T.A., Witkowski, B.S., Kopalko, K., Wachnicki, L., Zielony, E., Gwozdz, K., Bieganski, P., Placzek-Popko, E. and Godlewski, M., Sol. Energy Mater. Sol. Cells 147, 164170 (2016).Google Scholar
Hussain, B., Ebong, A. and Ferguson, I., Sol. Energy Mater. Sol. Cells 139, 95100 (2015).Google Scholar
Zhou, H., Fang, G., Yuan, L., Wang, C., Yang, X., Huang, H., Zhou, C. and Zhao, X., Appl. Phys. Lett. 94, 013503 (2009)Google Scholar
Chang, W.-C., Su, S.-C. and Wu, C.-C., Materials 9, 534 (2016).CrossRefGoogle Scholar
Jayakrishnan, R. and Hodes, G., Thin Solid Films 440, 1925 (2003).Google Scholar
Gal, D., Hodes, G., Lincot, D. and Schock, H.-W., Thin Solid Films 361-362, 7983 (2000).Google Scholar
Jung, M., Lee, J., Park, S., Kim, H. and Chang, J., J. Cryst. Growth 283, 384389 (2005).Google Scholar
Sharstniou, A., Chubenko, E. and Bondarenko, V., presented at 18-th International Conference-School “Advanced materials and technologies”, Palanga, Lithuania, 2016 (unpublished).Google Scholar
Liu, Y.L., Liu, Y.C., Liu, Y.X., Shen, D.Z., Lu, Y.M., Zhang, J.Y. and Fan, X.W., Phys. B 322, 3136 (2002).Google Scholar