Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T22:53:46.370Z Has data issue: false hasContentIssue false

Molecular Requirements for Printable Organic Semiconductors in 7-Alkyl-2-phenyl[1]benzothieno[3,2-b][1]benzothiophenes (Ph-BTBT-Cn ’s)

Published online by Cambridge University Press:  13 June 2016

S. Inoue*
Affiliation:
Nippon Kayaku Co., Ltd., 31-12, Shimo 3-Chome, Kita-ku, Tokyo 115-8588, Japan. National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562, Japan.
H. Minemawari
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562, Japan.
J. Tsutsumi
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562, Japan.
T. Hamai
Affiliation:
Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan.
S. Arai
Affiliation:
Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan.
T. Yamada
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562, Japan.
S. Horiuchi
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562, Japan.
M. Tanaka
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562, Japan.
M. Yoneya
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562, Japan.
R. Kumai
Affiliation:
Condensed Matter Research Center (CMRC) and Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801, Japan.
T. Hasegawa
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba 305-8562, Japan. Department of Applied Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656, Japan.
*
Get access

Abstract

Here we discuss requirements for high performance and solution processable organic semiconductors, by presenting a systematic investigation of 7-alkyl-2-phenyl[1]benzothieno[3,2-b][1]benzothiophenes (Ph-BTBT-Cn ’s). We found that the solubility and thermal properties of Ph-BTBT-Cn ’s depend systematically on the substituted alkyl-chain length n. The observed features are well understood in terms of the change of molecular packing motif with n: The compounds with n ≤ 4 do not form independent alkyl chain layers, whereas those with n ≥ 5 form isolated alkyl chain layers. The latter compounds afford a series of isomorphous bilayer-type crystal structures that form two-dimensional carrier transport layers within the crystals. We also show that the Ph-BTBT-C10 afford high performance single-crystalline field-effect transistors the mobility of which reaches as high as 15.9 cm2/Vs. These results demonstrate a crucial role of the substituted alkyl chain length for obtaining high performance organic semiconductors and field-effect transistors.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allard, S., Forster, M., Souharce, B., Thiem, H., Scherf, U., Angew. Chem. Int. Ed. 47, 40704098 (2008).Google Scholar
Kang, B., Lee, W. H., Cho, K., ACS Appl. Mater. Interfaces 5, 23022315 (2013).CrossRefGoogle Scholar
Mei, J., Diao, Y., Appleton, A. L., Fang, L., Bao, Z., J. Am. Chem. Soc. 135, 67246746 (2013).Google Scholar
Ebata, H., Izawa, T., Miyazaki, E., Takimiya, K., Ikeda, M., Kuwabara, H., Yui, T., J. Am. Chem. Soc. 129, 1573215733 (2007).CrossRefGoogle Scholar
Izawa, T., Miyazaki, E., Takimiya, K., Adv. Mater. 20, 33883392 (2008).Google Scholar
Minemawari, H., Yamada, T., Matsui, H., Tsutsumi, J., Haas, S., Chiba, R., Kumai, R., Hasegawa, T., Nature, 475, 364367 (2011).CrossRefGoogle Scholar
Niimi, K., Shinamura, S., Osaka, I., Miyazaki, E., Takimiya, K., J. Am. Chem. Soc. 133, 87328739 (2011).CrossRefGoogle Scholar
Mei, J., Bao, Z., Chem. Mater. 26, 604615 (2014).CrossRefGoogle Scholar
Tsutsumi, J., Matsuoka, S., Inoue, S., Minemawari, H., Yamada, T., Hasegawa, T., J. Mater. Chem. C 3, 19761981 (2015).CrossRefGoogle Scholar
Iino, H., Usui, T., Hanna, J., Nat. Commun. 6, 6828 (2015).CrossRefGoogle Scholar
Inoue, S., Minemawari, H., Tsutsumi, J., Chikamatsu, M., Yamada, T., Horiuchi, S., Tanaka, M., Kumai, R., Yoneya, M., Hasegawa, T., Chem. Mater. 27, 38093812 (2015).CrossRefGoogle Scholar
ADF calculation were performed by using the PW91/TZP package. ADF2013.01; Scientific Computing & Modeling (SCM), Theoretical Chemisty,Vrije Universiteit : Amsterdam, The Netherlands, https://www.scm.com.Google Scholar
Minemawari, H., Tsutsumi, J., Inoue, S., Yamada, T., Kumai, R., Hasegawa, T., Appl. Phys. Express 7, 091601 (2014).CrossRefGoogle Scholar
Inokuchi, H., Saito, G., Wu, P., Seki, K., Tang, T. B., Mori, T., Imaeda, K., Enoki, T., Higuchi, Y., Inaka, K., Yasuoka, N., Chem. Lett. 15, 12631266 (1986).Google Scholar
Zhang, L., Fonari, A., Liu, Y., Hoyt, A. M., Lee, H., Granger, D., Parkin, S., Russell, T. P., Anthony, J. E., Brédas, J. L., Coropceanu, V., Briseno, A. L., J. Am. Chem. Soc. 136, 92489251 (2014).Google Scholar