Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T06:49:45.307Z Has data issue: false hasContentIssue false

Modulation of Mesenchymal Stem Cell Migration using Programmable Polymer Sheet Actuators

Published online by Cambridge University Press:  11 May 2020

Zijun Deng
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513Teltow, Germany Institute of Chemistry and Biochemistry, Free University of Berlin, 14195Berlin, Germany
Weiwei Wang
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513Teltow, Germany
Xun Xu
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513Teltow, Germany
Nan Ma*
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513Teltow, Germany Institute of Chemistry and Biochemistry, Free University of Berlin, 14195Berlin, Germany
Andreas Lendlein*
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14513Teltow, Germany Institute of Chemistry and Biochemistry, Free University of Berlin, 14195Berlin, Germany Institute of Chemistry, University of Potsdam, 14469Potsdam, Germany
*
*To whom correspondence should be addressed: Prof. Dr. Nan Ma, Prof. Dr. Andreas Lendlein Email: [email protected], [email protected]
*To whom correspondence should be addressed: Prof. Dr. Nan Ma, Prof. Dr. Andreas Lendlein Email: [email protected], [email protected]
Get access

Abstract

Recruitment of mesenchymal stem cells (MSCs) to damaged tissue is a crucial step to modulate tissue regeneration. Here, the migration of human adipose-derived stem cells (hADSCs) responding to thermal and mechanical stimuli was investigated using programmable shape-memory polymer actuator (SMPA) sheets. Changing the temperature repetitively between 10 and 37 °C, the SMPA sheets are capable of reversibly changing between two different pre-defined shapes like an artificial muscle. Compared to non-actuating sheets, the cells cultured on the programmed actuating sheets presented a higher migration velocity (0.32 ± 0.1 vs. 0.57 ± 0.2 μm/min). These results could motivate the next scientific steps, for example, to investigate the MSCs pre-loaded in organoids towards their migration potential.

Type
Articles
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Oh, E. J., Lee, H. W., Kalimuthu, S., Kim, T. J., Kim, H. M., Baek, S. H., Zhu, L., Oh, J. M., Son, S. H., Chung, H. Y. and Ahn, B. C., J Control Release 279, 7988 (2018).CrossRefGoogle Scholar
Lin, W., Xu, L., Zwingenberger, S., Gibon, E., Goodman, S. B. and Li, G., J Orthop Translat 9, 1927 (2017).CrossRefGoogle Scholar
Fu, X., Liu, G., Halim, A., Ju, Y., Luo, Q. and Song, A. G., Cells 8 (8) 784 (2019).CrossRefGoogle ScholarPubMed
Eggenhofer, E., Benseler, V., Kroemer, A., Popp, F. C., Geissler, E. K., Schlitt, H. J., Baan, C. C., Dahlke, M. H. and Hoogduijn, M. J., Front Immunol 3, 297 (2012).CrossRefGoogle Scholar
Barbash, I. M., Chouraqui, P., Baron, J., Feinberg, M. S., Etzion, S., Tessone, A., Miller, L., Guetta, E., Zipori, D., Kedes, L. H., Kloner, R. A. and Leor, J., Circulation 108 (7), 863868 (2003).CrossRefGoogle Scholar
Schmidt, A., Ladage, D., Schinkothe, T., Klausmann, U., Ulrichs, C., Klinz, F. J., Brixius, K., Arnhold, S., Desai, B., Mehlhorn, U., Schwinger, R. H., Staib, P., Addicks, K. and Bloch, W., Stem Cells 24 (7), 17501758 (2006).CrossRefGoogle ScholarPubMed
Ball, S. G., Shuttleworth, C. A. and Kielty, C. M., J Cell Biol 177 (3), 489500 (2007).CrossRefGoogle Scholar
Forte, G., Minieri, M., Cossa, P., Antenucci, D., Sala, M., Gnocchi, V., Fiaccavento, R., Carotenuto, F., De Vito, P., Baldini, P. M., Prat, M. and Di Nardo, P., Stem Cells 24 (1), 2333 (2006).CrossRefGoogle ScholarPubMed
Li, Y., Yu, X., Lin, S., Li, X., Zhang, S. and Song, Y. H., Biochem Biophys Res Commun 356 (3), 780784 (2007).CrossRefGoogle Scholar
Dubon, M. J., Yu, J., Choi, S. and Park, K. S., J Cell Physiol 233 (1), 201213 (2018).CrossRefGoogle Scholar
Deng, Q. J., Xu, X. F. and Ren, J., Cell Mol Neurobiol 38 (2), 467477 (2018).CrossRefGoogle Scholar
Xiao Ling, K., Peng, L., Jian Feng, Z., Wei, C., Wei Yan, Y., Nan, S., Cheng Qi, G. and Zhi Wei, W., Stem Cells Int 2016, 8906945 (2016).CrossRefGoogle Scholar
Askari, A. T., Unzek, S., Popovic, Z. B., Goldman, C. K., Forudi, F., Kiedrowski, M., Rovner, A., Ellis, S. G., Thomas, J. D., DiCorleto, P. E., Topol, E. J. and Penn, M. S., Lancet 362 (9385), 697703 (2003).CrossRefGoogle Scholar
Liu, X., Duan, B., Cheng, Z., Jia, X., Mao, L., Fu, H., Che, Y., Ou, L., Liu, L. and Kong, D., Protein Cell 2 (10), 845854 (2011).CrossRefGoogle Scholar
Raab, M. and Discher, D. E., Cytoskeleton (Hoboken) 74 (3), 114124 (2017).CrossRefGoogle Scholar
Raab, M., Swift, J., Dingal, P. C., Shah, P., Shin, J. W. and Discher, D. E., J Cell Biol 199 (4), 669683 (2012).CrossRefGoogle Scholar
Vincent, L. G., Choi, Y. S., Alonso-Latorre, B., del Alamo, J. C. and Engler, A. J., Biotechnol J 8 (4), 472484 (2013).Google Scholar
Saxena, N., Mogha, P., Dash, S., Majumder, A., Jadhav, S. and Sen, S., J Cell Sci 131 (7) (2018).Google Scholar
Lee, J., Ishihara, A., Oxford, G., Johnson, B. and Jacobson, K., Nature 400 (6742), 382386 (1999).CrossRefGoogle Scholar
Wei, C., Wang, X., Chen, M., Ouyang, K., Song, L. S. and Cheng, H., Nature 457 (7231), 901905 (2009).CrossRefGoogle Scholar
Zhang, B., Luo, Q., Chen, Z., Sun, J., Xu, B., Ju, Y. and Song, G., Stem Cell Res 14 (2), 155164 (2015).CrossRefGoogle Scholar
Liang, X., Huang, X., Zhou, Y., Jin, R. and Li, Q., Stem Cells Transl Med 5 (7), 960969 (2016).CrossRefGoogle Scholar
Deng, Z., Wang, W., Xu, X., Gould, O. E. C., Kratz, K., Ma, N. and Lendlein, A., Proc Natl Acad Sci U S A, 117 (4) 18951901 (2020).CrossRefGoogle Scholar
Xu, X., Wang, W., Kratz, K., Fang, L., Li, Z., Kurtz, A., Ma, N. and Lendlein, A., Adv Healthc Mater 3 (12), 19912003 (2014).CrossRefGoogle Scholar
Webb, K., Hlady, V. and Tresco, P. A., J Biomed Mater Res 49 (3), 362368 (2000).3.0.CO;2-S>CrossRefGoogle Scholar
Ridley, A. J., Schwartz, M. A., Burridge, K., Firtel, R. A., Ginsberg, M. H., Borisy, G., Parsons, J. T. and Horwitz, A. R., Science 302 (5651), 17041709 (2003).CrossRefGoogle Scholar
Etienne-Manneville, S., Traffic 5 (7), 470477 (2004).CrossRefGoogle Scholar
Akhshi, T. K., Wernike, D. and Piekny, A., Cytoskeleton 71 (1), 123 (2014).CrossRefGoogle Scholar
Arjonen, A., Alanko, J., Veltel, S. and Ivaska, J., Traffic 13 (4), 610625 (2012).CrossRefGoogle Scholar
Vicente-Manzanares, M., Choi, C. K. and Horwitz, A. R., J Cell Sci 122 (Pt 2), 199206 (2009).CrossRefGoogle Scholar
Walker, M. L., Burgess, S. A., Sellers, J. R., Wang, F., Hammer, J. A., 3rd, Trinick, J. and Knight, P. J., Nature 405 (6788), 804807 (2000).CrossRefGoogle Scholar
Chen, C., Tao, T., Wen, C., He, W. Q., Qiao, Y. N., Gao, Y. Q., Chen, X., Wang, P., Chen, C. P., Zhao, W., Chen, H. Q., Ye, A. P., Peng, Y. J. and Zhu, M. S., J Biol Chem 289 (41), 2847828488 (2014).CrossRefGoogle Scholar