Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T07:52:05.387Z Has data issue: false hasContentIssue false

Microstructural and mechanical characterization of the effect of the welding process on creep behavior of welded joint and base metal specimens of Inconel 600

Published online by Cambridge University Press:  23 November 2020

Lourdes Y. Herrera-Chávez
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Edificio U, Ciudad Universitaria. 58030, Morelia, Michoacán, México.
Alberto Ruiz*
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Edificio U, Ciudad Universitaria. 58030, Morelia, Michoacán, México.
Víctor H. López-Morelos
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Edificio U, Ciudad Universitaria. 58030, Morelia, Michoacán, México.
Carlos Rubio-González
Affiliation:
Energy Division, Centro de Ingeniería y Desarrollo Industrial, Pie de la Cuesta. 702, Desarrollo San Pablo, Querétaro, Qro., 76130, México.
Martín R. Barajas-Álvarez
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Edificio U, Ciudad Universitaria. 58030, Morelia, Michoacán, México.
Arnoldo Bedolla Jacuinde
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Edificio U, Ciudad Universitaria. 58030, Morelia, Michoacán, México.
*
*Corresponding author: Tel.: +52 -443-471-7773. E-mail: [email protected] (Alberto Ruiz)
Get access

Abstract

In this study, plates of Inconel 600 superalloy were gas metal arc welded to investigate the effects of the welding process on the creep behavior of the welded samples and compare it to the creep behavior of samples in the as-received condition. Creep tests were performed at two temperatures (600 and 650 °C) with different stress levels. During the welding process, three distinctive microstructural zones are generated, i.e. welded material, heat affected zone, and base metal that may affect the properties of the welded joint. Microstructural, elemental analysis of samples was conducted using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDS). The experimental results show that creep rupture preferentially occurs in the heat-affected zone of the base metal at 4 mm from the fusion line and that the creep behavior of welded samples is different from that of the base metal. These results can be used in the design of structural components to assure their structural integrity.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Song, K. H., Fujii, H. and Nakata, K., Materials & Design 30 (10), 39723978 (2009).CrossRefGoogle Scholar
Kim, J.-D. and Moon, J.-H., Corrosion Science 46 (4), 807818 (2004).CrossRefGoogle Scholar
Herrera-Chávez, L. Y., Ruiz, A., López-Morelos, V. H. and Rubio-González, C., Materials Characterization 157, 109882 (2019).CrossRefGoogle Scholar
Newman, R., Roberge, R. and Bandy, R., Corrosion 39 (10), 386390 (1983).Google Scholar
Henderson, M., Arrell, D., Larsson, R., Heobel, M. and Marchant, G., Science and technology of welding and joining 9 (1), 1321 (2004).CrossRefGoogle Scholar
Chavez, S. A., Korth, G. E., Harper, D. M. and Walker, T. J., Nuclear Engineering and Design 148 (2), 351363 (1994).CrossRefGoogle Scholar
Quintino, L., Liskevich, O., Vilarinho, L. and Scotti, A., The International Journal of Advanced Manufacturing Technology 68 (9–12), 28332840 (2013).CrossRefGoogle Scholar
Yin, Y. F. and Faulkner, R. G., in Creep-Resistant Steels, edited by Abe, F., Kern, T.-U. and Viswanathan, R. (Woodhead Publishing, 2008), pp. 217240.CrossRefGoogle Scholar
Wu, H.-Y., Sun, P.-H., Zhu, F.-J., Wang, S.-C., Wang, W.-R., Wang, C.-C. and Chiu, C.-H., Procedia Engineering 36, 114120 (2012).CrossRefGoogle Scholar
Sato, Y. S., Arkom, P., Kokawa, H., Nelson, T. W. and Steel, R. J., Materials Science and Engineering: A 477 (1), 250258 (2008).CrossRefGoogle Scholar
Kihara, S., Newkirk, J. B., Ohtomo, A. and Saiga, Y., Metallurgical Transactions A 11 (6), 10191031 (1980).CrossRefGoogle Scholar
Hou, J., Peng, Q. J., Lu, Z. P., Shoji, T., Wang, J. Q., Han, E. H. and Ke, W., Corrosion Science 53 (3), 11371142 (2011).CrossRefGoogle Scholar
Gertsman, V. Y. and M, S.. Bruemmer, Acta Materialia 49 (9), 15891598 (2001).CrossRefGoogle Scholar