Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T02:06:49.909Z Has data issue: false hasContentIssue false

Melt-processed P3HT and PE Polymer Nanofiber Thermal Conductivity

Published online by Cambridge University Press:  25 July 2017

Matthew K. Smith*
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Thomas L. Bougher
Affiliation:
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Kyriaki Kalaitzidou
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
Baratunde A. Cola
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
*
*Correspondence to: [email protected]
Get access

Abstract

Thermal management is a growing challenge for electronics packaging because of increased heat fluxes and device miniaturization. Thermal interface materials (TIMs) are used in electronic devices to transfer heat between two adjacent surfaces. TIMs need to exhibit high thermal conductivity and must be soft to minimize thermal contact resistance. Polymers, despite their relative softness, suffer from low thermal conductivity (∼0.2 W/m-K). To overcome this challenge, we infiltrate nanoporous anodic aluminum oxide (AAO) templates with molten polymer to fabricate large area arrays of vertically aligned polymer nanofibers. Nanoscale confinement effects and flow induced chain elongation improve polymer chain alignment (measured using polarized Raman spectroscopy) and thermal conductivity (measured using the photoacoustic method) along the fiber’s long axis. Conjugated poly(3-hexylthiophene-2,5-diyl) (P3HT) and non- conjugated polyethylene (PE) of various molecular weights are explored to establish a relationship between polymer structure, nanofiber diameter, and the resulting thermal conductivity. In general, thermal conductivity improves with decreasing fiber diameter and increasing polymer molecular weight. Thermal conductivity of approximately 7 W/m-K was achieved for both the ∼200 nm diameter HDPE fibers and the 100 nm diameter P3HT fibers. These results pave the way for optimization of the processing conditions to produce high thermal conductivity fiber arrays using different polymers, which could potentially be used in thermal interface applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Choy, C. L., Chen, F. C., Luk, W. H., Polym, J.. Sci., Part B: Polym. Phys. 18, 1187 (1980).Google Scholar
Choy, C. L., Greig, D., Phys, J.. C: Solid State Phys. 10, 169 (1977).Google Scholar
Choy, C. L., Polymer 18, 984 (1977).CrossRefGoogle Scholar
Choy, C. L., Wong, Y. W., Yang, G. W., Kanamoto, T., Polym, J.. Sci., Part B: Polym. Phys. 37, 3359 (1999).3.0.CO;2-S>CrossRefGoogle Scholar
Shen, S., Henry, A., Tong, J., Zheng, R. T., Chen, G., Nat. Nanotechnol. 5, 251 (2010).CrossRefGoogle Scholar
Henry, A., Chen, G., Plimpton, S. J., Thompson, A., Phys. Rev. B 82, 144308 (2010).CrossRefGoogle Scholar
Cao, B. Y., Li, Y. W., Kong, J., Chen, H., Xu, Y., Yung, K. L., Cai, A., Polymer 52, 1711 (2011).CrossRefGoogle Scholar
Cao, B. Y., Kong, J., Xu, Y., Yung, K. L., Cai, A., Heat Transfer Eng. 34, 131 (2013).CrossRefGoogle Scholar
Zhang, T., Wu, X., Luo, T., Phys, J.. Chem. C 118, 21148 (2014).Google ScholarPubMed
Singh, V., Bougher, T. L., Weathers, A., Cai, Y., Bi, K., Pettes, M. T., McMenamin, S. A., Lv, W., Resler, D. P., Gattuso, T. R., Nat Nanotechnol. 9, 348 (2014).Google Scholar
Smith, M. K., Singh, V., Kalaitzidou, K., Cola, B. A., ACS Nano 9, 1080 (2015).CrossRefGoogle Scholar
Rojo, M. M., Martin, J., Grauby, S., Borca-Tasciuc, T., Dilhaire, S., Martin-Gonzalez, M., Nanoscale 6, 7858 (2014).CrossRefGoogle Scholar
Lee, Y.-J., Jeng, K.-S., Chen, J.-T., Sun, K. W., RSC Adv. 5, 90847 (2015).CrossRefGoogle Scholar
Wang, X., Cola, B. A., Bougher, T. L., Hodson, S. L., Fisher, T. S., Xu, X., Photoacoustic technique for thermal conductivity and thermal interface measurements. (Begell House, Inc, Danbury, Connecticut, ed. Annu. Rev. Heat Transfer, 2013) p. 135.Google Scholar
Hanping, H., Xinwei, W., Xianfan, X., J Appl. Phys. 86, 3593 (1999).Google Scholar
Citra, M. J., Chase, D. B., Ikeda, R. M., Gardner, K. H., Macromolecules 28, 4007 (1995).CrossRefGoogle Scholar
Gall, M., Hendra, P., Peacock, O., Cudby, M., Willis, H., Spectrochim. Acta, Part A 28, 1485 (1972).CrossRefGoogle Scholar
Pigeon, M., Prud’Homme, R. E., Pezolet, M., Macromolecules 24, 5687 (1991).CrossRefGoogle Scholar
Puppulin, L., Takahashi, Y., Zhu, W., Pezzotti, G., J. Raman Spectrosc. 42, 482 (2011).CrossRefGoogle Scholar
Xiao, G., Sun, Y., Xu, W., Lin, Y., Su, Z., Wang, Q., RSC Adv. 5, 76472 (2015).CrossRefGoogle Scholar
Veerender, P., Saxena, V., Chauhan, A. K., Koiry, S. P., Jha, P., Gusain, A., Choudhury, S., Aswal, D. K., Gupta, S. K., Sol. Energy Mater. Sol. Cells 120, Part B, 526 (2014).Google Scholar
Sun, Y., Xiao, G., Lin, Y., Su, Z., Wang, Q., RSC Adv. 5, 20491 (2015).CrossRefGoogle Scholar
Cheng, H. L., Lin, J. W., Jang, M. F., Wu, F. C., Chou, W. Y., Chang, M. H., Chao, C. H., Macromolecules 42, 8251 (2009).CrossRefGoogle Scholar
Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., Mu, R., Bellan, L. M., Li, D., Nanoscale 7, 16899 (2015).CrossRefGoogle Scholar
Shin, K., Woo, E., Jeong, Y. G., Kim, C., Huh, J., Kim, K.-W., Macromolecules 40, 6617 (2007).CrossRefGoogle Scholar
Wang, Z. L., Tang, D. W., Li, X. B., Zheng, X. H., Zhang, W. G., Zheng, L. X., Zhu, Y. T. T., Jin, A. Z., Yang, H. F., Gu, C. Z., Appl. Phys. Lett. 91, (2007).Google Scholar