Article contents
Mechanical Properties of Protomene: A Molecular Dynamics Investigation
Published online by Cambridge University Press: 03 January 2019
Abstract
Recently, a new class of carbon allotrope called protomene was proposed. This new structure is composed of sp2 and sp3 carbon-bonds. Topologically, protomene can be considered as an sp3 carbon structure (∼80% of this bond type) doped by sp2 carbons. First-principles simulations have shown that protomene presents an electronic bandgap of ∼3.4 eV. However, up to now, its mechanical properties have not been investigated. In this work, we have investigated protomene mechanical behavior under tensile strain through fully atomistic reactive molecular dynamics simulations using the ReaxFF force field, as available in the LAMMPS code. At room temperature, our results show that the protomene is very stable and the obtained ultimate strength and ultimate stress indicates an anisotropic behavior. The highest ultimate strength was obtained for the x-direction, with a value of ∼110 GPa. As for the ultimate strain, the highest one was for the z-direction (∼25% of strain) before protomene mechanical fracture.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2018
References
- 2
- Cited by