Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T23:03:49.222Z Has data issue: false hasContentIssue false

Mechanical Properties of Architectured Gelatin-Based Hydrogels on Different Hierarchical Levels

Published online by Cambridge University Press:  06 June 2016

Radovan Vukićević
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow
Axel T. Neffe
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow
Tim Gebauer
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow
Oliver Frank
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow
Michael Schossig
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow
Andreas Lendlein*
Affiliation:
Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow
*
Get access

Abstract

Preparation of three-dimensionally architectured porous biomaterials can be achieved in a one-step process by stabilizing gelatin with L-lysine diisocyanate ethyl ester (LDI) in water. The reaction of gelatin with LDI in presence of water leads to the formation of oligourea bridges between gelatin molecules and oligourea chains grafted on gelatin. The number and the length of the bridges, as well as of the grafted chains strongly depend on the concentration of the LDI used for the stabilization, and this has huge influence on the mechanical properties of the material on different hierarchical levels. Higher LDI concentrations yield materials with increased deformation resistance in tensile tests due to the higher number of covalent and physical netpoints in the material. However, mechanical properties determined on the micro-level by AFM indentation showed the opposite trend, i.e. a decrease of Young’s modulus with increasing LDI content. This was interpreted by a decreasing number of shorter oligourea bridges between gelatin chains with decreasing LDI content.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Neffe, A. T., Pierce, B. F., Tronci, G., Ma, N., Pittermann, E., Gebauer, T., Frank, O., Schossig, M., Xu, X. and Willie, B. M., Adv. Mater. 27, 1738 (2015).CrossRefGoogle Scholar
Tronci, G., Neffe, A. T., Pierce, B. F. and Lendlein, A., J. Mater. Chem. 20, 8875 (2010).CrossRefGoogle Scholar
Marklein, R. A. and Burdick, J. A., Soft Matter 6, 136 (2010).CrossRefGoogle Scholar
Huebsch, N., Arany, P. R., Mao, A. S., Shvartsman, D., Ali, O. A., Bencherif, S. A., Rivera-Feliciano, J. and Mooney, D. J., Nature Materials 9, 518 (2010).CrossRefGoogle Scholar
Ebenstein, D. M. and Pruitt, L. A., Nano Today 1, 26 (2006).CrossRefGoogle Scholar
Oyen, M. L., Curr. Opin. Solid State Mater. Sci. 19, 317 (2015).CrossRefGoogle Scholar
Nieto, A., Boesl, B. and Agarwal, A., Carbon 85, 299 (2015).CrossRefGoogle Scholar
Lin, S. and Gu, L., Materials 8, 551 (2015).CrossRefGoogle Scholar
Radmacher, M., Fritz, M. and Hansma, P. K., Biophys. J. 69, 264 (1995).CrossRefGoogle Scholar