Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T15:42:51.661Z Has data issue: false hasContentIssue false

Magnetodielectric coupling in Ferromagnetic/Ferroelectric/Ferromagnetic spin capacitor

Published online by Cambridge University Press:  16 January 2017

F. Aponte*
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00936, USA
R. Masso
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00936, USA
K. Dasari
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00936, USA
G. Sreenivasulu
Affiliation:
Physics Department, Oakland University, Rochester, Michigan, USA
G. Srinivasan
Affiliation:
Physics Department, Oakland University, Rochester, Michigan, USA
R. Palai
Affiliation:
Department of Physics, University of Puerto Rico, San Juan, PR 00936, USA
*
Get access

Abstract

Ferromagnetic/Ferroelectric/Ferromagnetic (Ni/PZT/Ni) tri-layer artificial multiferroelectric structures in spin capacitor configuration were fabricated by sputtering ferromagnetic electrodes on PZT. Magnetocapacitance, magnetoimpedance, and phase angle measurements were carried out by a wide range of frequencies and magnetic fields at room temperature. We also compared the magnetodielectric measurements with Ni/PZT/Ag and Ag/PZT/Ag tri-layers structures. Ni/PZT/Ni spin capacitor shows a significantly different behavior compared to conventional PZT capacitor with Ag electrode and mixed electrode capacitor with one ferromagnetic and one conventional electrode.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Babu, N., Siddheshwar, A., Srinivas, K., Suryanarayana, S. V., Bhimasankaram, T.. J. Mater. Science, 44, Issue 15, 39483951. (2009).Google Scholar
Pan, D., Bai, Y., Chu, W., Qiao, L.. J. Phys.: Condens. Matter 20 (2008).Google Scholar
Laletin, V. M., Paddubnaya, N., Srinivasan, G., De Vreugd, C. P., Bichurin, M. I., Petrov, V. M., Filippov, D. A., Appl. Phys. Lett. 87 222507 (2005).Google Scholar
Palai, R., Scott, J. F., and Katiyar, R. S., Phys. Rev. B 81, 024115 (2010).CrossRefGoogle Scholar
Palai, R., Schmid, H., Scott, J. F., and Katiyar, R. S.. Phys. Rev. B 81, 064110 (2010)CrossRefGoogle Scholar
Pana, D.A., Tiana, J.J., Zhanga, S.G., Sunb, J.S., Volinskyc, A.A., Qiaoa, L.J.. Mater. Science and Engineering, B 163, pp 114119. (2009).Google Scholar
7. Jordan, T.L., Ounaies, Z.. NASA/CR-2001–211225, ICASE Report No. 2001-28 (2001).Google Scholar
Suryanarayana, S.V., Bull Mater Sci 17, 1259. (1994).Google Scholar
Eerenstein, W., Mathur, MD., Scott, JF.. Nature 44, 2, 759 (2006).Google Scholar
Martinez, A., Palai, R., Huhtinen, H., Liu, J., Scott, J. F., and Katiyar, R. S.. Phys. Rev. B 82, 134104 (2010).Google Scholar
Laletsin, U., Padubnaya, N., Srinivasan, G., Devreugd, CP.. Appl. Phys. A 78 33 (2004).CrossRefGoogle Scholar
Nan, C. W., Liu, L., Cai, N., Zhai, J. Y., Lin, Y. H., Appl. Phys. Lett. 81 3831 (2002).Google Scholar
Wan, J. G., Li, Z. Y., Liu, J. M., Appl. Phys. Lett. 86 202504 (2005).CrossRefGoogle Scholar
Guo, S.S., Zhang, S.G., Volinsky, A.A., Qiao, L.J., J. Phys. D: Appl. Phys. 41 205008 (2008).Google Scholar
Shi, Z., Nan, C. W., Zhang, J., Cai, N., Li, J. F., Appl. Phys. Lett. 87 012503 (2005).Google Scholar
Bedenbecker, M., Gatzen, H. H., J. Appl. Phys. 99 08M30 (2006).Google Scholar
Dong, S. X., Zhai, J. Y., Wang, N. G., Bai, F. M., Li, J. F., Viehland, D., Appl. Phys. Lett. 87 22250 (2005).Google Scholar
Kleemann, W., Borisov, P., Bedanta, S., Shvartsman, V. V., IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency control, vol. 57, no. 10, october (2010).Google Scholar
Hu, Z., Appl. Phys. Lett. 106 022901 (2015).Google Scholar
Meng, H., Wang, J. P.. Appl. Phys. Lett. 88 172506 (2006).CrossRefGoogle Scholar
Beaujour, J. M. L., Chen, W., Krycka, K., Kao, C. C., Sun, J. Z., Kent, A. D.. Eur. Phys. J. B 59 475 (2007).Google Scholar
Cui, J., Appl. Phys. Lett. 107 092903 (2015).Google Scholar
Yuasa, S., Fukushima, A., Kubota, H., Suzuki, Y., Ando, K., Appl. Phys. Lett. 89, 042505 (2006).Google Scholar
Palai, R., Katiyar, R. S., Schmid, H., Tissot, P., Clark, S. J., Robertson, J., Redfern, S. A. T., Catalan, G., and Scott, J. F.. Phys. Rev. B 77, 014110 (2008).Google Scholar
Schmid, H., Ferroelectrics 162, 317 (1994).CrossRefGoogle Scholar
Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M., Ramesh, R., Science 299, 1719 (2003).Google Scholar
Fiebig, M., Lottermoser, T., Fröhlich, D., Goltsev, A. V., Pisarev, R. V., Nature 419, Issue 6909, 818820 (2002).Google Scholar
Tokura, Y., Science 312, 1481 (2006).Google Scholar
Hill, N. A., Phys, J.. Chem. B 104, 6694 (2000).Google Scholar
Fischer, P., Polomska, M., Sosnowska, I., Szymański, M., J. Phys. C 13, 1931 (1980).Google Scholar
Smolenskii, G. A., Chupis, I., Sov. Phys. Usp. 25, 475 (1982).CrossRefGoogle Scholar
Kubel, F., Schmid, H., Acta Crystallogr., Sect. B: Struct. Sci. 46, 698 (1990).Google Scholar
Sosnowska, I., Peterlin-Neumaier, T., Steichele, E., J. Phys. C 15, 4815 (1982).CrossRefGoogle Scholar
Tabares-Munoz, C., Rivera, J. F., Bezinges, A., Monnier, A., Schmid, H., Jpn. J. Appl. Phys., Part 1 24, 1051 (1985).Google Scholar