Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T11:13:07.443Z Has data issue: false hasContentIssue false

Magnetic Defects in Transitional Metal Di-Chalcogenide Semiconducting Layers

Published online by Cambridge University Press:  28 January 2018

L. M. Martinez
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, Texas79968, USA.
M. D. Teran
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, Texas79968, USA.
R. R. Chianelli
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, Texas79968, USA.
S. R. J. Hennadige
Affiliation:
Department of Chemistry, The University of Texas at El Paso, El Paso, Texas79968, USA.
S. R. Singamaneni*
Affiliation:
Department of Physics, The University of Texas at El Paso, El Paso, Texas79968, USA.
Get access

Abstract

In this work, we report on the electron spin resonance (ESR) studies performed on few-layered nanocrystalline (NCs) MoS2, WS2, and TiS2 prepared using hydrothermal and vapor transport methods. From the temperature dependent ESR spectra collected from MoS2 NCs, we have identified adsorbed oxygen species, sulphur vacancies, thio- and oxo-Mo5+ related paramagnetic defect centers. WS2 NCs have exhibited W+3 and oxo-W+5 paramagnetic defect spin species. TiS2 NCs showed defects such as Fe3+ (unwanted), oxygen and sulfur vacancies. This work demonstrates the usage of spin-sensitive spectroscopy such as ESR in unravelling the defects which contain unpaired electron spin centers in layered NCs two-dimensional materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Q. H., et al. , Nat. Nanotech. 7, 699 (2012).Google Scholar
Bhimanapati, G. R., Lin, Z. et al. , ACS Nano 12, 11509 (2015).Google Scholar
Butler, S. Z., Hollen, S. M. et al. , ACS Nano 12, 2898 (2013).Google Scholar
Ye, Gonglan, et al. , Nano Lett., 16, 1097 (2016).Google Scholar
Li, Guoqing, et al. , J. Am. Chem. Soc., 138, 16632 (2016).Google Scholar
Yu, Yifei, et al. , Nano Lett., 14, 553 (2014).CrossRefGoogle Scholar
Jaramillo, Thomas F., et al. , SCIENCE, 317, 100 (2007)Google Scholar
Xu, Yuzi, et al. , J. Mater. Chem. A, 4, 16524 (2016).CrossRefGoogle Scholar
Lin, Zhong, et al. , 2D Mater. 3, 022002 (2016).Google Scholar
Rasool, Haider I., et al. , Adv. Mater. 27, 5771 (2015).Google Scholar
Hong, Jinhua, et al. , Nat. Comm. 6, 6293 (2015).Google Scholar
Rao, S. S., et al. , J. Phys.: Condens. Matter 23, 455801 (2011).Google Scholar
Rao, S. S., et al. , Appl. Phys. Lett. 107, 212402 (2015).Google Scholar
Rao, S. S., et al. , ACS Nano 6, 7615 (2012).Google Scholar
Iacovo, S., et al. , J. Phys.: Condens. Matter., 29, 08LT01 (2017).Google Scholar
Chiappe, D., et al. , Adv. Mater. Interfaces, 3, 1500635 (2016).Google Scholar
Cai, Liang, et al. , J. Am. Chem. Soc., 137, 2622 (2015).CrossRefGoogle Scholar
Gu, W., et al. , ACS Appl. Mater. Interfaces, 8, 11272 (2016).Google Scholar
Chianelli, R. R., et al. , Catalysis Today 147, 275 (2009).CrossRefGoogle Scholar
Bensimon, Y., et al. , J. Phys. Chem. 88, 2754 (1984).Google Scholar
Deroide, B., et al. , J. Phys. Chem. Solids 52, 853, (1991).CrossRefGoogle Scholar
Konings, A.J.A., et al. , J. Catal. 54, 1 (1978).Google Scholar
Konings, A. J. A., et al. , J. Catal. 67, 145 (1981).Google Scholar
Gratzel, M. and Howe, R. F., J. Phys. Chem., 94, 2566 (1990).Google Scholar
Coronado, J. M., et al. Langmuir, 17, 5368 (2001).Google Scholar
Hurun, D. C., et al. J. Phys. Chem. B, 107, 4545 (2003).Google Scholar
Supplementary material: File

Martinez et al. supplementary material

Figures S1 and S2

Download Martinez et al. supplementary material(File)
File 151.3 KB