Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-04T20:10:51.287Z Has data issue: false hasContentIssue false

Low Cost Method for Generating Periodic Nanostructures by Interference Lithography Without the Use of an Anti-Reflection Coating

Published online by Cambridge University Press:  30 January 2017

Omree Kapon*
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan 5920002, Israel Bar-Ilan University Institute for Nanotechnology and Advanced Materials, Ramat-Gan 5920002, Israel
Merav Muallem
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan 5920002, Israel Bar-Ilan University Institute for Nanotechnology and Advanced Materials, Ramat-Gan 5920002, Israel
Alex Palatnik
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan 5920002, Israel Bar-Ilan University Institute for Nanotechnology and Advanced Materials, Ramat-Gan 5920002, Israel
Hagit Aviv
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan 5920002, Israel Bar-Ilan University Institute for Nanotechnology and Advanced Materials, Ramat-Gan 5920002, Israel
Yaakov. R. Tischler
Affiliation:
Department of Chemistry, Bar-Ilan University, Ramat-Gan 5920002, Israel Bar-Ilan University Institute for Nanotechnology and Advanced Materials, Ramat-Gan 5920002, Israel
*
Get access

Abstract

Interference lithography has proven to be a useful technique for generating periodic sub-diffraction limited nanostructures. Interference lithography can be implemented by exposing a photoresist polymer to laser light using a two-beam arrangement or a one-beam configuration based on a Lloyd’s Mirror Interferometer. For typical photoresist layers, an anti-reflection coating must be deposited on the substrate to prevent adverse reflections from cancelling the holographic pattern of the interfering beams. For silicon substrates, such coatings are typically multilayered and complex in composition. By thinning the photoresist layer to a thickness well below the quarter wavelength of the exposing beam, we demonstrate that interference gratings can be generated without an anti-reflection coating on the substrate. We used ammonium dichromate doped polyvinyl alcohol as the positive photoresist because it provides excellent pinhole free layers down to thicknesses of 40 nm, and can be cross-linked by a low-cost single mode 457 nm laser and etched in water. Gratings with a period of 320 nm and depth of 4 nm were realized, as well as a variety of morphologies depending on the photoresist thickness. This simplified interference lithography technique promises to be useful for generating periodic nanostructures with high fidelity and minimal substrate treatments.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lemme, M.C., Moormann, C., Lerch, H., Möller, M., Vratzov, B., and Kurz, H., Nanotechnology 15, S208 (2004).CrossRefGoogle Scholar
Selvaraja, S.K., Jaenen, P., Bogaerts, W., Van Thourhout, D., Dumon, P., and Baets, R., J. Light. Technol. 27, 4076 (2009).CrossRefGoogle Scholar
Burrow, G.M., Leibovici, M.C.R., and Gaylord, T.K., Appl. Opt. 51, 4028 (2012).CrossRefGoogle Scholar
Wolferen, H., Abelmann, L., and van Wolferen, H., Lithogr. Princ. Process. Mater. 133 (2011).Google Scholar
Divliansky, I., Mayer, T.S., Holliday, K.S., and Crespi, V.H., Appl. Phys. Lett. 82, 1667 (2003).CrossRefGoogle Scholar
Turberfield, A. J., Nature 404, 53 (2000).Google Scholar
Lu, C. and Lipson, R.H., Laser Photonics Rev. 4, 568 (2010).CrossRefGoogle Scholar
Xie, Q., Hong, M.H., Tan, H.L., Chen, G.X., Shi, L.P., and Chong, T.C., J. Alloys Compd. 449, 261 (2008).CrossRefGoogle Scholar
Pease, R.F., Microelectron. Eng. 78–79, 381 (2005).CrossRefGoogle Scholar
Labeyrie, A. and Flamand, J., Opt. Commun. 1, 5 (1969).CrossRefGoogle Scholar
Rudolph, D. and Schmahl, G., Optik (Stuttg). 30, 475 (1970).Google Scholar
Berger, V., Gauthier-Lafaye, O., and Costard, E., J. Appl. Phys. 82, 60 (1997).CrossRefGoogle Scholar
Haast, M. A., Heskamp, I., Abelmann, L., Lodder, J., and Popma, T.J., J. Magn. Magn. Mater. 193, 511 (1999).CrossRefGoogle Scholar
Choi, W.K., Liew, T.H., Dawood, M.K., Smith, H.I., Thompson, C. V., and Hong, M.H., Nano Lett. 8, 3799 (2008).CrossRefGoogle Scholar
Päivänranta, B., Langner, A., Kirk, E., David, C., and Ekinci, Y., Nanotechnology 22, 375302 (2011).CrossRefGoogle Scholar
Moon, J.H., Yang, S., and Ford, J., Polym. Adv. Technol. 17, 83 (2006).CrossRefGoogle Scholar
Quiñónez, F., Menezes, J.W., Cescato, L., Rodriguez-Esquerre, V.F., Hernandez-Figueroa, H., and Mansano, R.D., Opt. Express 14, 4873 (2006).CrossRefGoogle Scholar
de Boor, J., Geyer, N., Gösele, U., and Schmidt, V., Opt. Lett. 34, 1783 (2009).CrossRefGoogle Scholar
Barikani, M., Simova, E., and Kavehrad, M., 34, 2172 (1995).Google Scholar
Bogaerts, W., Taillaert, D., Luyssaert, B., Dumon, P., Van Campenhout, J., Bienstman, P., Van Thourhout, D., and Baets, R., 12, 1583 (2004).Google Scholar
Bogaerts, W., Wiaux, V., Taillaert, D., Beckx, S., Luyssaert, B., Bienstman, P., and Baets, R., IEEE J. Sel. Top. Quantum Electron. 8, 928 (2002).CrossRefGoogle Scholar
Miyake, M., Chen, Y.-C., Braun, P. V., and Wiltzius, P., Adv. Mater. 21, 3012 (2009).CrossRefGoogle Scholar
Spinelli, P., Verschuuren, M. a., and Polman, a., Nat. Commun. 3, 692 (2012).CrossRefGoogle Scholar
Heavens, O.S., Opt. Acta Int. J. Opt. 33, 1336 (1986).CrossRefGoogle Scholar
Kapon, O., Muallem, M., Palatnik, A., Aviv, H., and Tischler, Y.R., Appl. Phys. Lett. 107, (2015).CrossRefGoogle Scholar
Virganavius, D., Limatonis, A. Jurkeviute, Tamulevius, T., and Tamulevius, S., Proc. SPIE - Int. Soc. Opt. Eng. 9170, 1 (2014).Google Scholar
Ji, R., Lee, W., Scholz, R., Gösele, U., and Nielsch, K., Adv. Mater. 18, 2593 (2006).CrossRefGoogle Scholar
Stange, T.G., Mathew, R., Evans, D.F., and Hendrickson, W. a., Langmuir 8, 920 (1992).CrossRefGoogle Scholar
Hall, D.B., Underhill, P., and Torkelson, J.M., Polym. Eng. Sci. 38, 2039 (1998).CrossRefGoogle Scholar
Berezin, S., Kalanoor, B.S., Taha, H., Garini, Y., and Tischler, Y.R., Nanophotonics 3, 117 (2014).CrossRefGoogle Scholar
Aviv, H., Harazi, S., Schiff, D., Ramon, Y., and Tischler, Y.R., Thin Solid Films 564, 86 (2014).CrossRefGoogle Scholar
Mailhot, G., Bolte, M., and France, A.C., 1228 (1993).Google Scholar
Kelly, J., Gleeson, M., Close, C., O’Neill, F., Sheridan, J., Gallego, S., and Neipp, C., Opt. Express (2005).Google Scholar
Xue, L., Zhang, J., and Han, Y., Prog. Polym. Sci. 37, 564 (2012).CrossRefGoogle Scholar
Bai, S., Zhou, W., Lin, Y., Zhao, Y., Chen, T., Hu, A., and Duley, W.W., J. Nanoparticle Res. 16, 2470 (2014).CrossRefGoogle Scholar
Pang, Z. and Zhang, X., Opt. Commun. 285, 4583 (2012).CrossRefGoogle Scholar