Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T09:43:47.016Z Has data issue: false hasContentIssue false

Low Contrast Sub-wavelengths Grating Lenses

Published online by Cambridge University Press:  07 February 2017

Mao Ye
Affiliation:
Integrated Nano Optoelectronics Laboratory, University of Michigan, Dearborn, MI48128, U.S.A.
Ya Sha Yi*
Affiliation:
Integrated Nano Optoelectronics Laboratory, University of Michigan, Dearborn, MI48128, U.S.A. Energy Institute, University of Michigan, Ann Arbor, MI48109, U.S.A.
Get access

Abstract

In this work, we have demonstrated the light concentration from zero-contrast gratings (ZCG) subwavelength structures and compared the light concentration properties of previously proposed high-contrast gratings (HCG) to the ZCG micro concentrating lenses. To address the challenges of potential HCG fabrication, the difference between ZCG and HCG micro lenses is investigated numerically and found both of these subwavelength grating structures have similar light concentration characteristics. To gain deeper understanding of this phenomenon, we have explored the light concentration formation process and discussed the concentration mechanism in detail. Our work will be promising to provide a new ZCG micro lens potentially with easier and more controllable fabrication and could be utilized for various integrated nanophotonics applications, from optical cavities, read/write heads and concentrating photovoltaics.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hessel, A. and Oliner, A. A., Appl. Opt. 4, 12751297 (1965)CrossRefGoogle Scholar
Magnusson, R., Opt. Lett. 39, 43374340 (2014)Google Scholar
Chang-Hasnain, C. J. and Yang, W., Adv. Opt. Photonics 4, 379440 (2012)CrossRefGoogle Scholar
Mateus, F. R., Huang, M.C.Y., Deng, Y., Andrew R, N., and Chang-Hasnain, C. J., IEEE Photonics Technol. Lett. 16, 518520 (2004)Google Scholar
Liu, Z. S., Tibuleac, S., Shin, D., Young, P. P., and Magnusson, R., Opt. Lett. 23, 15561558 (1998)CrossRefGoogle Scholar
Lin, S. F., Wang, C. M., Tsai, Y. L., Ding, T. J., Yang, T. H., Chen, W. Y., Yeh, S. F., and Chang, J. Y., Sens. Actuators B 176, 11971203 (2013)Google Scholar
Kabashin, V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G. A., Atkinson, R., Pollard, R., Podolskiy, V. A., and Zayats, A. V., Nat. Mater. 8, 867871 (2009)CrossRefGoogle Scholar
Lin, Y. R., Lai, K. Y., Wang, H. P., and He, J. H., Nanoscale 2, 27652768 (2010)CrossRefGoogle Scholar
Wang, Y., Xu, H., Shi, G., Xu, M., Lin, X., Li, H., Wang, W., Qi, D., Lu, Y., and Chi, L., Nano Res. 3, 520527 (2010)CrossRefGoogle Scholar
Zhu, J., Liu, S., Jiang, H., Zhang, C., and Chen, X., Opt. Lett. 40, 471474 (2015)CrossRefGoogle Scholar
Yu, Y. and Zappe, H., Opt. Express 19(10), 94349444 (2011)CrossRefGoogle Scholar
Lerman, G. M., Grajower, M., Yanai, A., and Levy, U., Opt. Lett. 36(20), 39723974(2011)CrossRefGoogle Scholar
Moharam, M. G., Grann, E. B., Pommet, D. A., and Gaylord, T. K., J. Opt. Soc. Am. A12(5), 10681076(1995)CrossRefGoogle Scholar
Dapor, M., Ciappa, M., and Fitner, W., J. Micro/Nanolith. MEMS MOEMS. 9, 023001 (2010)Google Scholar