Article contents
Liquid Transport in Bio-Inspired Capillary-Driven Open-Air Channels
Published online by Cambridge University Press: 23 January 2017
Abstract
We fabricated a novel open-air channel with high efficient capillary-driven system inspired by a coastal animal “wharf roach”. The animal has open-air channels on its legs to transport water spontaneously using by capillary force. We abstracted principles controlling this phenomenon and applied it to artificial open-air channels, aiming at manipulating liquids without external energies. After surface modification for high surface free energy, the inspired open-air channels were able to transport water against gravity as well as the open-air channels of wharf roach by capillary effect of surface microstructures and chemistries. Topographical variation in micrometer-scaled patterns induced transport velocities improvement due to the enhancement of spreading intervals between the microstructure and wettability. Considering topography of micropatterned surfaces, the open-air channels with controllable transport velocity are applicable to capillary-driven microfluidics and lab-on-a-chips.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2017
References
REFERENCES
- 7
- Cited by