Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T07:58:09.517Z Has data issue: false hasContentIssue false

Layered Sodium Manganese Oxide Na2Mn3O7 as an Insertion Host for Aqueous Zinc-ion Batteries

Published online by Cambridge University Press:  03 July 2019

Krishnakanth Sada*
Affiliation:
Faraday Materials Laboratory (FaMaL), Materials Research Center, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
Prabeer Barpanda
Affiliation:
Faraday Materials Laboratory (FaMaL), Materials Research Center, Indian Institute of Science, C.V. Raman Avenue, Bangalore, 560012, India
*
*Corresponding Author E-mail: Krishnakanth Sada, [email protected]
Get access

Abstract

Aqueous rechargeable batteries are attractive owing to their higher operational safety, high ionic conductivity, scalable and easy manufacturing. These aqueous batteries form an economic option for large-scale (grid) power storage. In the aqueous battery sector, Mn-based compounds are highly attractive with their non-toxic nature, low-cost, rich mineral chemistry and robust operational safety. Several Mn-based systems like LiMn2O4 spinel and LiNi1/3Mn1/3Co1/3O2 have seen successful commercialization. Pursuing Mn-based materials, we have shown layer structured Na2Mn3O7 as a versatile cathode material for non-aqueous systems like Li-, Na- and K-ion batteries. In the current work, we have exploited Na2Mn3O7 as a cathode material for aqueous Zn-ion battery for the first time. This Na-Mn-O ternary system was prepared using two-step emulsion-based synthesis. The phase-pure Na2Mn3O7 was formed in a triclinic structure with a space group of P-1. It exhibited versatile electrochemical insertion of different ions like Li-, Na- and K-ions involving phase transition. Na2Mn3O7 exhibited reversible Zn-ion intercalation delivering capacity of 245 mA h g-1 with a nominal voltage of 1.5 V. Upon discharge, it triggered phase transformation to an unknown phase. Layered Na2Mn3O7 oxide was found to act as an efficient cathode for Zn-ion batteries with good cycling stability.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dunn, B., Kamath, H., Tarascon, J.-M., Science, 334, 928 (2011).CrossRefGoogle Scholar
Yabuuchi, N., Kubota, K., Dahbi, M., Komaba, S., Chem. Rev., 23, 11636 (2014).CrossRefGoogle Scholar
Kim, H., Hong, J., Park, K.-Y., Kim, H., Kim, S.-W., Kang, K., Chem. Rev., 114, 11788 (2014).CrossRefGoogle Scholar
Sada, K., Senthilkumar, B., Barpanda, P., ACS Appl. Energy Mater., 1, 6719 (2018).CrossRefGoogle Scholar
Sada, K., Senthilkumar, B., Barpanda, P., ACS Appl. Energy Mater., 1, 5410 (2018).CrossRefGoogle Scholar
Sada, K., Senthilkumar, B., Barpanda, P., ECS Trans., 85, 207 (2018).CrossRefGoogle Scholar
Adamczyk, E., Pralong, V., Chem. Mater., 29, 4645 (2017).CrossRefGoogle Scholar
Kubota, K., Dahbi, M., Hosaka, T., Kumakura, S., Komaba, S., Chem. Rec., 18, 459 (2018).CrossRefGoogle Scholar
Kim, H., Kim, J. C., Bianchini, M., Seo, D.-H., Garcia, J. R., Ceder, G., Adv. Energy Mater., 9, 1702384 (2018).CrossRefGoogle Scholar
Sada, K., Senthilkumar, B., Barpanda, P., Chem. Commun., 53, 8588 (2017).CrossRefGoogle Scholar
Fang, G., Zhou, J., Pan, A., Liang, S., ACS Energy Lett., 3, 2480 (2018).CrossRefGoogle Scholar
Song, M., Tan, H., Chao, D., Fan, H. J., Adv. Funct. Mater., 28, 1802564 (2018).CrossRefGoogle Scholar
Momma, K., Izumi, F., J. Appl. Crystallogr., 44, 1272 (2011).CrossRefGoogle Scholar
Maslen, E. N., Streltsov, V. A., Streltsova, N. R., Ishizawa, N., Acta. Cryst., B51, 929 (1995).CrossRefGoogle Scholar
Chang, F., Jansen, M., Anorg, Z.. Allg. Chem., 531, 177 (1985).CrossRefGoogle Scholar
Pan, H., Shao, Y., Yan, P., Cheng, Y., Han, K. S., Nie, Z., Wang, C., Yang, J., Li, X., Bhattacharya, P., Mueller, K. T., Liu, J., Nat. Energy, 1, 16039 (2016).CrossRefGoogle Scholar
Qiu, N., Chen, H., Yang, Z., Sun, S., Wang, Y., Electrochim. Acta, 72, 154 (2018).CrossRefGoogle Scholar
Alfaruqi, M. H., Gim, J., Kim, S., Song, J., Pham, D. T., Jo, J., Xiu, Z., Mathew, V., Kim, J., Electrochem. Commun., 60, 121 (2015).CrossRefGoogle Scholar
Han, S. D., Kim, S., Li, D., Petkov, V., Yoo, H. D., Phillips, P. J., Wang, H., Kim, J. J., More, K. L., Key, B., Klie, R. F., Cabana, J., Stamenkovic, V. R., Fister, T. T., Markovic, N. M., Burrel, A. K., Tepavcevic, S., Vaughey, J. T., Chem. Mater., 29, 4874 (2017).CrossRefGoogle Scholar
Wu, X., Li, Y., Xiang, Y., Liu, Z., He, Z., Wu, X., Li, Y., Xiong, L., Li, C., Chen, J., J. Power Sources, 336, 35 (2016).CrossRefGoogle Scholar