Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-28T00:57:58.088Z Has data issue: false hasContentIssue false

Ion Beam Synthesis of Doped Nanocrystals of Si1-xGex Alloys Embedded in SiO2

Published online by Cambridge University Press:  16 January 2017

A. Chelouche*
Affiliation:
ICube, CNRS-Université de Strasbourg, UMR 7357, 23 rue du Loess, BP 20 CR, 67037 Strasbourg Cedex 2, France
G. Schmerber
Affiliation:
IPCMS , CNRS-Université de Strasbourg, UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg Cedex 2, France
G. Ferblantier
Affiliation:
ICube, CNRS-Université de Strasbourg, UMR 7357, 23 rue du Loess, BP 20 CR, 67037 Strasbourg Cedex 2, France
D. Muller
Affiliation:
ICube, CNRS-Université de Strasbourg, UMR 7357, 23 rue du Loess, BP 20 CR, 67037 Strasbourg Cedex 2, France
D. Mathiot
Affiliation:
ICube, CNRS-Université de Strasbourg, UMR 7357, 23 rue du Loess, BP 20 CR, 67037 Strasbourg Cedex 2, France
*
Get access

Abstract

As an extension of our previous proving that ion beam synthesis is an efficient route to form doped silicon nanocrystals (nc’s) [1, 2], we show here that ion beam synthesis, by co-implantion of the dopant and of the constituents of the alloy, followed by a single high temperature anneal, is also a convenient way to grow more complex structures, such as As doped nc’s of Si1-xGex alloys.

Rutherford backscattering spectrometry (RBS) is used to measure the impurity profiles and evaluate the average concentration of the various species (Si, Ge, As). The formation of the nc’s is evidenced by TEM observation and further confirmed by Raman and XRD analysis, which also allow us to estimate the Ge content of the nc’s.

The incorporation of As inside the Si1-xGex nc’s is attested by the presence of the characteristic Ge-As related line in the Raman spectra of the As-doped samples, and strengthened by the increased conductivity of MOS structure including such doped nc’s inside the dielectric film.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Khelifi, R., Mathiot, D., Gupta, R., Muller, D., Roussel, M., Duguay, S., Appl. Phys. Lett. 102, 013116 (2013).CrossRefGoogle Scholar
Frégnaux, M., Khelifi, R., Muller, D., Mathiot, D., J. Appl. Phys. 116, 143505 (2014).CrossRefGoogle Scholar
Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzò, G., Priolo, F., Nature 408, 440 (2000).CrossRefGoogle Scholar
Priolo, F., Gregorkiewicz, T., Galli, M., Krauss, T. F., Nature nanotechnology 9, 19 (2014).Google Scholar
Wheeler, L. M., Levij, L. M., Kortshagen, U. R., J. Phys. Chem. Lett. 4, 3392 (2013)CrossRefGoogle Scholar
Liu, X., Zhang, Y., Yu, T., Qiao, X., Gresback, R., Pi, X. D., Yang, D., Part. Part. Syst. Charact. 33, 44 (2016).Google Scholar
Wang, X., Kimerling, L. C., Michel, J., Liu, J., Appl. Phys. Lett. 102, 131116 (2013).CrossRefGoogle Scholar
Fujii, M., Sugimoto, H., Imakita, K., Nanotechnology 27, 262001 (2016).Google Scholar
Ennen, H., Schneider, J., Pomrenke, G., Axmann, A., Appl. Phys. Lett. 43, 943 (1983).CrossRefGoogle Scholar
Drozdov, N. A., Patrin, A. A., Tkachev, V. D., JETP Lett. 23, 597 (1976).Google Scholar
Kveder, V. et al. ., Appl. Phys. Lett. 84, 2106 (2004).Google Scholar
Takeoka, S., Toshikiyo, K., Fujii, M., Hayashi, S., Yamamoto, K., Phys. Rev. B 61, 15988 (2000).Google Scholar
Pan, S. W., Zhou, B., Chen, S. Y., Li, C., Huang, W., Lai, H. K., Appl. Surf. Sc. 258, 30 (2011).CrossRefGoogle Scholar
Pi, X. D., Kortshagen, U., Nanotechnology 20, 295602 (2009).Google Scholar
Erogbogbo, F., Liu, T., Ramadurai, N., Tuccarione, P., Lai, L., Swihart, M T., Prasad, P. N., ACS Nano 5, 7950 (2011).CrossRefGoogle Scholar
Barba, D., Cai, R. S., Demarche, J., Wang, Y. Q., Terwagne, G., Rosei, F., Martin, F., Ross, G. G., Appl. Phys. Lett. 104, 111901 (2014).Google Scholar
Giang, N. T., Conga, L.T., Dung, N. D., Quang, T. V., Ha, N. N., Journal of Physics and Chemistry of Solids 93 (2016)Google Scholar
Barba, D., Demarche, J., Martin, F., Terwagne, G., Ross, G. G., J. Appl. Phys. 114, 074306 (2013).CrossRefGoogle Scholar
Pagès, O., Souhabi, J., Torres, V. J. B., Postnikov, A. V., Rustagi, K. C., Phys. Rev. B 86, 045201 (2012).Google Scholar
Rodríguez, A., Ortiz, M. I., Sangrador, J., Rodriguez, T., Avella, M., Prieto, A. C., Torres, A., Jimenez, J., Kling, A., Ballesteros, C., Nanotechnology 18, 065702 (2007).Google Scholar
Mestanza, S. N. M., Rodriguez, E., Frateschi, N. C., Nanotechnology 17, 4548 (2006).Google Scholar
Tan, P. H., Brunner, K., Bard, D., Abstreiter, G., Phys. Rev. B 68, 125302 (2003).Google Scholar
Alonso, M. I. and Winer, K., Phys. Rev. B 39, 10056 (1989).Google Scholar
Kutzner, J., Kortus, J., Pätzold, O., Wunderwald, U., Irmer, G., J. Raman Spectrosc. 42, 2132 (2011).Google Scholar