Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T05:29:53.909Z Has data issue: false hasContentIssue false

The Internal Buckling Behavior Induced by Growth Self-restriction in Vertical Multi-walled Carbon Nanotube Arrays

Published online by Cambridge University Press:  07 May 2018

Quan Zhang
Affiliation:
Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Guo-an Cheng*
Affiliation:
Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Rui-ting Zheng
Affiliation:
Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
*
Get access

Abstract

The internal buckling is a common phenomenon in the as-grown carbon nanotube arrays. It makes the physical properties of carbon nanotube array in experiment lower than that in theory. In this work, we analyzed the formation and evolution mechanism of the internal buckling based on quasi-static compression model, which is different from collective effect of the van der Waals interactions. The self-restriction effect and the different growth rate of carbon nanotubes verify the possibility of the quasi-static compression model to explain the morphology evolution of vertical carbon nanotube arrays, especially the phenomenon of the quasi-straight and bent carbon nanotubes coexisted in the array. We generalized the Euler beam to wave-like beam and explained the mechanism of high-mode buckling combined with the van der Waals interaction. The calculated result about the link between compressive stress and strain confirms with the stage of collective buckling in the quasi-static compression test of carbon nanotube array. Preparation of well-organized carbon nanotube arrays was strong evidence verified the effect of self-restriction in experiment.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Iijima, S., Nature 354 (6348), 56-58 (1991).CrossRefGoogle Scholar
Ren, Z.F.; Huang, Z.P.; Xu, J.W.; Wang, J.H.; Bush, P.; Siegal, M.P.; and Provencio, P.N., Science 282 (5391), 11051107 (1998).CrossRefGoogle Scholar
Fan, S.; Chapline, M.G.; Franklin, N.R.; Tombler, T.W.; Cassell, A.M.; and Dai, H., Science 283 (5401), 512514 (1999).CrossRefGoogle Scholar
Deng, J.; Zheng, R.; Zhao, Y.; and Cheng, G., ACS Nano 6 (5), 37273733 (2012).CrossRefGoogle Scholar
Deng, J.; Zheng, R.; Yang, Y.; Zhao, Y.; and Cheng, G., Carbon 50 (12), 47324737 (2012).CrossRefGoogle ScholarPubMed
Deng, J.; Hou, X.; Cheng, L.; Wang, F.; Yu, B.; Li, G.; Li, D.; Cheng, G.; and Wu, S., ACS Appl. Mater. Inter. 6 (7), 51375143 (2014).CrossRefGoogle Scholar
Deng, J.; Cheng, G.; Zheng, R.; Yu, B.; Li, G.; Hou, X.; Zhao, M.; and Li, D., Carbon 67 (0), 525533 (2014).CrossRefGoogle Scholar
Cao, A.; Dickrell, P.L.; Sawyer, W.G.; Ghasemi-Nejhad, M.N.; and Ajayan, P.M., Science 310 (5752), 13071310 (2005).CrossRefGoogle Scholar
Jian-hua Deng, Z.P.R.Z., J. Korean Phys. Soc. 58 (41), 897901 (2011).CrossRefGoogle Scholar
Selvakumar, N.; Krupanidhi, S.B.; and Barshilia, H.C., Adv. Mater. 26 (16), 25522557 (2014).CrossRefGoogle Scholar
Hart, A.J.; and Slocum, A.H., Nano Lett.. 6 (6), 12541260 (2006).CrossRefGoogle Scholar
Zhang, Q.; Zhou, W.; Qian, W.; Xiang, R.; Huang, J.; Wang, D.; and Wei, F., The Journal of Physical Chemistry C 111 (40), 1463814643 (2007).CrossRefGoogle Scholar
Lee, J.; Oh, E.; Kim, H.; Cho, S.; Kim, T.; Lee, S.; Park, J.; Kim, H.; and Lee, K., J. Mater. Sci. 48 (20), 68976904 (2013).CrossRefGoogle Scholar
Maschmann, M.R., Carbon 86 (0), 2637 (2015).CrossRefGoogle Scholar
Tong, T.; Zhao, Y.; Delzeit, L.; Kashani, A.; Meyyappan, M.; and Majumdar, A., Nano Lett.. 8 (2), 511515 (2008).CrossRefGoogle Scholar
Li, Y.; Kim, H.; Wei, B.; Kang, J.; Choi, J.; Nam, J.; and Suhr, J., Nanoscale 7 (34), 1429914304 (2015).CrossRefGoogle ScholarPubMed
Vainio, U.; Schnoor, T.I.W.; Koyiloth Vayalil, S.; Schulte, K.; Müller, M.; and Lilleodden, E.T., The Journal of Physical Chemistry C 118 (18), 95079513 (2014).CrossRefGoogle Scholar
Wang, B.N.; Bennett, R.D.; Verploegen, E.; Hart, A.J.; and Cohen, R.E., The Journal of Physical Chemistry C 111 (16), 58595865 (2007).CrossRefGoogle Scholar
Meshot, E.R.; Verploegen, E.; Bedewy, M.; Tawfick, S.; Woll, A.R.; Green, K.S.; Hromalik, M.; Koerner, L.J.; Philipp, H.T.; Tate, M.W.; Gruner, S.M.; and Hart, A.J., ACS Nano 6 (6), 50915101 (2012).CrossRefGoogle Scholar
Yun, Y.; Shanov, V.; Tu, Y.; Subramaniam, S.; and Schulz, M.J., The Journal of Physical Chemistry B 110 (47), 2392023925 (2006).CrossRefGoogle Scholar
Stein, I.Y.; Lewis, D.J.; and Wardle, B.L., Nanoscale 7 (46), 1942619431 (2015).CrossRefGoogle Scholar
Supplementary material: File

Zhang et al. supplementary material 1

Zhang et al. supplementary material

Download Zhang et al. supplementary material 1(File)
File 2.1 MB