Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T07:29:46.788Z Has data issue: false hasContentIssue false

Interlayer transition in graphene carbon quantum dots

Published online by Cambridge University Press:  16 November 2020

Jorge Alberto Cuadra Aparicio
Affiliation:
Universidad de El Salvador, Facultad de Ciencias Naturales y Matemáticas, Escuela de Física, Laboratorio de Espectroscopia Óptica.
Hamilton Ponce
Affiliation:
Universidad de El Salvador, Facultad de Ciencias Naturales y Matemáticas, Escuela de Física, Laboratorio de Espectroscopia Óptica.
Carlos Rudamas
Affiliation:
Universidad de El Salvador, Facultad de Ciencias Naturales y Matemáticas, Escuela de Física, Laboratorio de Espectroscopia Óptica.
Get access

Abstract

Graphene Carbon Quantum Dots (GCQDs) are multi-layered carbon nanostructures that have attracted considerable attention due to its unique properties. Many technological applications, such as batteries, biological imaging, capacitors, solar cells, light emitting diodes, among others, could benefit from the low toxicity and the chemical and physical stability of these nanostructures. Despite much research, many optical properties, such as absorption and photoluminescence, of GCQDs are not completely understood yet. GCQD absorption spectra show a number of different bands whose origin is still on discussion. Many interpretations are made considering a single graphene layer. In this work, GCQD samples synthesized by the pyrolysis of citric acid was characterized by absorption spectroscopy measurements and Density Functional Theory simulations considering multi-layered structures. Density of States and electronic response functions calculations were also performed. From the results of these calculations, the absorption band associated to a π-π* (CC) transition could be also associated to a transition between different graphene layers.

Type
Articles
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Elias Ponce, H. and Rudamas, C., revista Matéria 20, 676-681 (2015).Google Scholar
Oliva, I., Alvarenga, S. and Rudamas, C. in 2nd World Congress on Recent Advances in Nanotechnology, edited by Wolfgang Ensinger (Proc. 105, Barcelona).Google Scholar
Alvarenga, S., Ponce, H., Oliva, I. and Rudamas, C. in edited by Jin Zhang (Proc. 140, Niagara Falls).Google Scholar
Emam, A.N., Loutfy, S. A., Mostafa, A. A., Awad, H. and Mohamed, M. B., RSC Adv. 7 (38), 2350223514 (2017).CrossRefGoogle Scholar
Semonin, O. E., Luther, J. M., and Beard, M. C., Mater. Today 15 (11), 508515 (2012).CrossRefGoogle Scholar
Shirasaki, Y., Supran, G. J., Bawendi, M. G., and Bulovié, V., Nat. Photon. 7 (12), 933933 (2013).CrossRefGoogle Scholar
Wang, H., Sun, P., Cong, S., Wu, J., Gao, L., Wang, Y., Dai, X., Yi, Q., and Zou, G., Nanoscale Res. Lett. 11 (1), 118 (2016).Google Scholar
Gu, J., Zhang, X., Pang, A. and Yang, J., Nanotechnology, 27 (16), 165704 (2016).CrossRefGoogle Scholar
Valizadeh, A., Mikaeili, H., Samiei, M., Mohammad, , Farkhani, S. M., Samad Mussa, , Zarghami, N., Nosratalah, , Kouhi, M., Akbarzadeh, Mohammad A., and Davaran, S., Soodabeh, , Nanoscale Res. Lett. 7, 480 (2012)CrossRefGoogle Scholar
Jelinek, R., in Carbon quantum dots: synthesis, properties and applications, edited by Araujo, Paulo (Springer international publishing, Switzerland, 2017), p. 129130.CrossRefGoogle Scholar
Wang, Y. and Hu, A., J. Mater. Chem. C 2, 6921 (2014).CrossRefGoogle Scholar
Tian, P., Tang, L., Teng, K. S. and Lau, S. P., Mater. Today Chem. 10, 221258 (2018).CrossRefGoogle Scholar
Matamala, A. R. and Alarcón, A. A., I. J. Q. Chem. 112 (5), 13161322 (2012).CrossRefGoogle Scholar
Kwon, W., Do, S., Kim, J. H., Jeong, M. S. and Rhee, W., Sci. Rep. 5, 12604 (2015).CrossRefGoogle Scholar
Ozfidan, I., Güçlü, A. D., Korkusinski, M. and Hawrylak, P., Phys. Status Solidi RRL 10 (1), 102110 (2016).CrossRefGoogle Scholar
Yamijala, S. S. R. K. C., Mukhopadhyay, M. and Pati, S. K., J. Phys. Chem. C 119, 1207912087 (2015).CrossRefGoogle Scholar
Cuadra, J., Ponce, H. and Rudamas, C., in 2018 IEEE 38th Central America and Panama Convention, edited by Manuel Cardona (Proc., San Salvador).Google Scholar
Wang, S., Chen, Z. G., Gang, Zhi, Cole, I. and Li, Q., Carbon 82, 304313 (2015).CrossRefGoogle ScholarPubMed
Giannozzi, P., Baroni, S., Bonini, N., et al. , J. Phys.: Condens. Matter 21 (39), 395502 (2009).Google Scholar
Giannozzi, P., Andreussi, Oliviero, Brumme, T, et al. , J. Phys.: Condens. Matter 29 (46), 465901 (2017).Google Scholar
Malcıoglu, O. B., Gebauer, R., Rocca, D., Baroni, S., Comput. Phys. Commun. 182 (8), 17441754 (2011).CrossRefGoogle Scholar
Thonhauser, T., Cooper, V. R., Li, S., Puzder, A., Hyldgaard, P. and Langreth, D. C., Phys. Rev. B 76 (12), 125112 (2007).CrossRefGoogle Scholar
Langreth, D. C., Lundqvist, B. I., Chakarova-Kack, S. D. et al. , J. Phys.: Condens. Matter 21 (8), 084203 (2009).Google Scholar
Berland, K., Cooper, V. R., Lee, K., Elsebeth, S., Thonhauser, T., Per, H., Bengt I, L., Rep. Prog. Phys. 78 (6), 66501 (2015).CrossRefGoogle Scholar
Cuadra, J., Licenciatura thesis, Universidad de El Salvador, 2020.Google Scholar