Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T05:01:47.075Z Has data issue: false hasContentIssue false

Inkjet-Printed Flexible Active Multilayered Structures

Published online by Cambridge University Press:  27 February 2017

Charles Trudeau*
Affiliation:
Department of Electrical Engineering, École de Technologie Supérieur, 1100 Notre-Dame Ouest, Montréal, QC, Canada H3C 1K3 Institut National d’Optique, 2740 Einstein Street, Québec, QC, Canada G1P 4S4
Martin Bolduc
Affiliation:
Institut National d’Optique, 2740 Einstein Street, Québec, QC, Canada G1P 4S4
Patrick Beaupré
Affiliation:
Institut National d’Optique, 2740 Einstein Street, Québec, QC, Canada G1P 4S4
Patrice Topart
Affiliation:
Institut National d’Optique, 2740 Einstein Street, Québec, QC, Canada G1P 4S4
Christine Alain
Affiliation:
Institut National d’Optique, 2740 Einstein Street, Québec, QC, Canada G1P 4S4
Sylvain Cloutier
Affiliation:
Department of Electrical Engineering, École de Technologie Supérieur, 1100 Notre-Dame Ouest, Montréal, QC, Canada H3C 1K3
*

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Active inkjet materials are invoked in the fabrication of optoelectronic devices. These types of multilayer assemblies contain a variety of commercially available ink formulations. It is envisioned that a dielectric SU-8 material can be used in a FET-like structure to form an interlayer between conductive silver and semi-conductive MWCNT-doped PEDOT:PSS ink layers. These printed structures may be fabricated onto a polyimide based flexible substrate, for instance. These structures are a starting point for offering valuable information on layer-on-layer printing interactions and interface problematics within a complete inkjet device fabrication.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

References

REFERENCES

Sette, D., Functional printing: from the study of printed layers to the prototyping of flexible devices (Doctoral dissertation, Université de Grenoble, 2014).Google Scholar
Su, W., Liu, Q., Cook, B., and Tentzeris, M., All-inkjet-printed microfluidics-based encodable flexible chipless RFID sensors. (In Microwave Symposium (IMS), 2016 IEEE MTT-S International) pp. 14.CrossRefGoogle Scholar
Kim, D., and Moon, J., Electrochemical and Solid-State Letters, 8(11), J30J33 (2005).CrossRefGoogle Scholar
West, J., Sears, J., Carter, M., and Smith, S., Photonic sintering of silver nanoparticles: comparison of experiment and theory. (INTECH Open Access Publisher, 2012) pp. 173188 Google Scholar
Park, S.J., Lee, E.J., and Kwon, S.H., Bulletin of the Korean Chemical Society, 28(2), 188192 (2007).Google Scholar
Jokinen, V., Suvanto, P., and Franssila, S., Biomicrofluidics, 6(1), 016501 (2012).CrossRefGoogle Scholar
Walther, F., Davydovskaya, P., Zürcher, S., Kaiser, M., Herberg, H., Gigler, A.M., and Stark, R.W., Journal of Micromechanics and Microengineering, 17(3), 524 (2007).CrossRefGoogle Scholar