Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T07:00:53.979Z Has data issue: false hasContentIssue false

Initial study of micronized zinc borate as flame retardant in Eucalyptus grandis from Uruguay

Published online by Cambridge University Press:  25 September 2018

Álvaro Camargo*
Affiliation:
Instituto Superior de Estudios Forestales, Sede Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
Claudia M Ibañez
Affiliation:
Instituto Superior de Estudios Forestales, Sede Tacuarembó, Universidad de la República, Tacuarembó, Uruguay
*
Get access

Abstract

Zinc borate has long been used as a protector for wood products due to its fungicide, insecticide and flame retardant properties. In this initial study, its capacity as a flame retardant when applied to Eucalyptus grandis wood is evaluated; micronized zinc borate, synthesized from zinc oxide and boric acid in our laboratory was used. The methodology used in the study is the use of the Vandersall tunnel, which allowed analyzing parameters such as the flame spread, the carbonization index, the carbonization area and the wood weight loss. The results show a remarkable improvement in these parameters after the application of micronized zinc borate. For the longest fire exposure time, the percentage decrease of each evaluated parameter is, for tangential and radial plane respectively: 31.27-43.00% for flame spread, 36.66-40.86% for carbonization area, 33.01-52.49% for carbonization index and 19.86-57.80% for mass loss.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Uruguay, XXI. Informe del Sector Forestal en Uruguay. Setiembre 2016. Presidencia de la República, República Oriental del Uruguay.Google Scholar
Odinma, S.C., Okoye, N.H., Okoro, V.E., International Journal of Engineering Science Invention. 2, 5660 (2013).Google Scholar
Liodakis n, S., Antonopoulos, I., Kakardakis, T.. Fire Safety Journal 45, 98105 (2010).CrossRefGoogle Scholar
Momoh, M., Horrocks, A. R., Ehoatu, A. N., Kolawoled, E. G.. Polymer degradation and Stability. 54, 403411 (1996).CrossRefGoogle Scholar
Mazela, B., Broda, M., Perdoch, W.. Int Research Group/Wood Protection. Sec 3 (2014).Google Scholar
Garay, R., Henriquez, M.. Maderas, Ciencia Y Tecnologia, 12(1), 1124 (2010).Google Scholar
León, A. Carmona R. 4° Congreso Chileno de Ciencias Forestales. (2009).Google Scholar
Fanga, Y., Wanga, Q., Guoa, C., Songa, Y., Cooper, P.A.. Journal of Analytical and Applied Pyrolysis. 100, 230236 (2013).CrossRefGoogle Scholar
Di Blasi, C., Branca, C., Galgano, A.. Polymer Degradation and Stability 92, 752764 (2007).CrossRefGoogle Scholar
Jiang, J., Li, J., Hu, J., Fan, D.. Construction and Building Materials 24, 26332637 (2010).CrossRefGoogle Scholar
Aseeva, R., Serkov, B., Sivenkov, A.. Fire Behavior and Fire Protection in Timber Buildings Springer Series in wood Science.pp 1751 (2014).CrossRefGoogle Scholar
Terzi, E., Sutcu, H., Pijkin, S., Kartal, S. N.. Int Research Group/Wood Protection. Sec 3 (2009).Google Scholar
Garba, B.. Polymer Degradation and Stability 64, 517522 (1999).CrossRefGoogle Scholar
Russell, L J, O Marney, D C, Humphrey, D G, Hunt, A C, Dowling, V P, Cookson, L J. Austrialian Goverment, Forest and Wood Products Research and Development Corporation, Project No: PN04-2007. (2004).Google Scholar
Yang, Y, Shi, X, Zhao, R. Journal of fire sciences, 17, 355361 (1999).CrossRefGoogle Scholar