Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-22T17:32:30.354Z Has data issue: false hasContentIssue false

Influence of Nb Microaddition on Microstructure and Texture Evolution in a Fe-21Mn-1.3Al-1.5Si-0.5C TWIP Steel under Uniaxial Hot-Tensile Conditions

Published online by Cambridge University Press:  16 November 2017

A.E. Salas-Reyes
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, 58066-Morelia, Michoacán, México. E-mail: [email protected], [email protected] Departamento de Ingeniería Metalúrgica, Facultad de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Coyoacán, Cd. Universitaria, 04510-Ciudad de México, México.
I. Mejía*
Affiliation:
Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, 58066-Morelia, Michoacán, México. E-mail: [email protected], [email protected]
J.M. Cabrera
Affiliation:
Departament de Ciència dels Materials i Enginyeria Metal∙lúrgica, EEBE-Universitat Politècnica de Catalunya, c/Eduard Maristany 10-14, Edif. I, Of 1.18, 08019-Barcelona, Spain.
*
Get access

Abstract

Advanced high-strength steels as Twinning Induced Plasticity (TWIP) steels have been developed using microalloying elements and subsequent thermo-mechanical processing techniques. Moreover, under hot-working conditions, these steels undergo significant microstructural changes as a result of preferred crystallographic orientation (texture) of grains. In order to evaluate this behavior, one non-microalloyed and other single Nb-microalloyed TWIP steels were melted in an induction furnace and cast into metal and sand molds. Samples with austenitic grain sizes between 400 and 2000 µm were deformed at 800 °C and strained at a constant strain rate of 10-3 s-1, and deformation state was examined by means of electron backscatter diffraction (EBSD) technique near to the fracture tip. It was found that non-microalloyed TWIP steel solidified in both metal and sand mold exhibits dynamically recrystallized grains. On the other hand, Nb microaddition has a strong influence in TWIP steel retarding the onset of recrystallization kinetics, showing low angle sub-structured grains. Furthermore, it was possible identifying the crystallographic orientation of grains using the inverse pole figures (IPF) and the orientation distribution function (ODF). Weak cube {001}<100> recrystallization and E{111}<110> γ-fiber deformation textures components were detected.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dryzek, E., Sarnek, M. and Wróbel, M., Nukleonika 60, 709 (2015).CrossRefGoogle Scholar
Bouzaiz, O., Allain, S., Scott, C.P. and Coggy, P., Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).CrossRefGoogle Scholar
Llanos, L., Pereda, B. and López, B., Metall. Mater. Trans. A 46, 5248 (2015).Google Scholar
Zhang, J., Di, H., Mao, K., Wang, X., Han, Z. and Ma, T., Mater. Sci. Eng. A 587, 110 (2013).CrossRefGoogle Scholar
Zhang, Y.B., Elbrond, A. and Lin, F.X., Mater. Charact. 96, 158 (2014).CrossRefGoogle Scholar
Randle, Y., Engler, O., “The Kikuchi diffraction pattern”, Chapter 6, Introduction to texture analysis: macrotexture, microtexture and orientation mapping, CRC Press, Taylor & Francis Group, 130 (2015).Google Scholar
McQueen, H.J., Imbert, C.A.C., J. Alloys Comps. 378, 35 (2004).CrossRefGoogle Scholar
Mcdarmaid, D.S., Partridge, P.G., J. Mater. Sci. 21, 1525 (1986).CrossRefGoogle Scholar
Mirzadeh, H., Cabrera, J.M., Najafizadeh, A., Calvillo, P.R., Mater. Sci. Eng. A 538, 236 (2012).Google Scholar
DeArdo, A.J., Inter. Mater. Rev. 48, 371 (2003).Google Scholar
Mejía, I., Salas-Reyes, A.E., Bedolla-Jacuinde, A., Calvo, J., Cabrera, J.M., Mater. Sci. Eng. A 616, 229 (2014).CrossRefGoogle Scholar