Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-02T18:58:11.318Z Has data issue: false hasContentIssue false

In Vivo Dopamine Detection and Single Unit Recordings Using Intracortical Glassy Carbon Microelectrode Arrays

Published online by Cambridge University Press:  23 January 2018

Elisa Castagnola*
Affiliation:
MEMS Research Lab., Department of Mechanical Engineering, College of Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA92182-1323, USA Center for Sensorimotor Neural Engineering (CSNE), Box 37, 1414 NE 42nd St., Suite 204, Seattle, WA98105-6271, USA.
Nasim Winchester Vahidi
Affiliation:
Dept. of Electrical Engineering, University of California San Diego, La Jolla, CA92093, USA Neurosciences Graduate Program, University of California San Diego, 9500Gilman Dr, La Jolla, CA, USA
Surabhi Nimbalkar
Affiliation:
MEMS Research Lab., Department of Mechanical Engineering, College of Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA92182-1323, USA Center for Sensorimotor Neural Engineering (CSNE), Box 37, 1414 NE 42nd St., Suite 204, Seattle, WA98105-6271, USA.
Srihita Rudraraju
Affiliation:
Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
Marvin Thielk
Affiliation:
Neurosciences Graduate Program, University of California San Diego, 9500Gilman Dr, La Jolla, CA, USA
Elena Zucchini
Affiliation:
Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17/19, 44121, Ferrara, Italy
Claudia Cea
Affiliation:
MEMS Research Lab., Department of Mechanical Engineering, College of Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA92182-1323, USA Center for Sensorimotor Neural Engineering (CSNE), Box 37, 1414 NE 42nd St., Suite 204, Seattle, WA98105-6271, USA.
Stefano Carli
Affiliation:
Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17/19, 44121, Ferrara, Italy
Timothy Q. Gentner
Affiliation:
Neurosciences Graduate Program, University of California San Diego, 9500Gilman Dr, La Jolla, CA, USA
Davide Ricci
Affiliation:
Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
Luciano Fadiga
Affiliation:
Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17/19, 44121, Ferrara, Italy Human Physiology, University of Ferrara, Via Fossato di Mortara 17/19, 44121, Ferrara, Italy.
Sam Kassegne
Affiliation:
MEMS Research Lab., Department of Mechanical Engineering, College of Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA92182-1323, USA Center for Sensorimotor Neural Engineering (CSNE), Box 37, 1414 NE 42nd St., Suite 204, Seattle, WA98105-6271, USA.
*
Get access

Abstract

In this study, we present a 4-channel intracortical glassy carbon (GC) microelectrode array on a flexible substrate for the simultaneous in vivo neural activity recording and dopamine (DA) concentration measurement at four different brain locations (220µm vertical spacing). The ability of GC microelectrodes to detect DA was firstly assessed in vitro in phosphate-buffered saline solution and then validated in vivo measuring spontaneous DA concentration in the Striatum of European Starling songbird through fast scan cyclic voltammetry(FSCV). The capability of GC microelectrode arrays and commercial penetrating metal microelectrode arrays to record neural activity from the Caudomedial Neostriatum of European starling songbird was compared. Preliminary results demonstrated the ability of GC microelectrodes in detecting neurotransmitters release and recording neural activity in vivo. GC microelectrodes array may, therefore, offer a new opportunity to understand the intimate relations linking electrophysiological parameters with neurotransmitters release.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

van Spronsen, M and Hoogenraad, C. C., Curr Neurol Neurosci Rep. 10(3), 207 (2010).CrossRefGoogle Scholar
Brisch, R., Saniotis, A., Wolf, R., Bielau, H., Bernstein, H. G., Steiner, J., Bogerts, B., Braun, K., Jankowski, Z., Kumaratilake, J., Henneberg, M., Gos, T., Front Psychiatry 5, 47 (2014).Google Scholar
Lotharius, J. and Brundin, P., Nature Reviews Neuroscience 3(12), 932 (2002).CrossRefGoogle Scholar
Volkow, N. D., Fowler, J.S, Wang, G. J., Behav Pharmacol. 13(5-6), 355 (2002).CrossRefGoogle Scholar
Castagnola, E., Carli, S., Vomero, M., Scarpellini, A., Prato, M., Goshi, N., Fadiga, L., Kassegne, S., Ricci, D., Biointerphases 12(3), 031002 (2017).CrossRefGoogle Scholar
Mundroff, M. L. and Wightman, M. R., Curr Protoc Neurosci Chapter 6: Unit 6.14, (2002).Google Scholar
Cahill, P. S., Walker, Q. D., Finnegan, J. M., Mickelson, G. E., Travis, E. R., Wightman, M. R., Anal Chem 68, 3180 (1996).CrossRefGoogle Scholar
Taylor, I. M., Robbins, E. M., Catt, K. A., Cody, P. A., Happe, C. L., Cui, X.T., Biosens Bioelectron 89(Pt 1), 400 (2017).CrossRefGoogle Scholar
Xiao, N. and Venton, B. J., Anal Chem. 84(18), 7816 (2012).CrossRefGoogle Scholar
Yi, W. Yang, Y. Hashemi, P. Ming-Cheng Cheng, M., Biomed Microdevices 18, 112 (2016).CrossRefGoogle Scholar
Zachek, M. K., Takmakov, P., Moody, B., Wightman, R. M., McCarty, G. S., Anal Chem 81(15), 6258 (2009).CrossRefGoogle Scholar
Vomero, M., Castagnola, E., Ciarpella, F., Maggiolini, E., Goshi, N., Zucchini, E., Carli, S., Fadiga, L., Kassegne, S., Ricci, D., Scientific Reports 7, 40332 (2016).CrossRefGoogle Scholar
Vomero, M, van Niekerk, P, Nguyen, V., Gong, N, Hirabayashi, M., Cinopri, A., Logan, K., Moghadasi, A., Varma, P and Kassegne, S., J Micromechanic Microengineer 26, 2 (2016).CrossRefGoogle Scholar
Simonyan, K., Horwitz, B., and Jarvis, E. D., Brain Lang 122(3), 142 (2012).CrossRefGoogle Scholar