Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T02:47:24.508Z Has data issue: false hasContentIssue false

Impact of Magnetically Aligned CNT/PC Nanocomposites for Hydrogen Gas Separation Applications

Published online by Cambridge University Press:  20 May 2016

Anshu Sharma*
Affiliation:
Centre for Non-Conventional Energy Resources, University of Rajasthan, Jaipur-302004, India
S. P. Nehra
Affiliation:
Centre of Excellence for Energy and Environmental Studies, Deenbandhu Chhotu Ram University of Science & Technology, Murthal-131039, India
Y. K. Vijay
Affiliation:
Vivekanand Global University, Jaipur-303905, India
I. P. Jain
Affiliation:
Centre for Non-Conventional Energy Resources, University of Rajasthan, Jaipur-302004, India
*
# Corresponding author’s detail: Fax: +91-141-2711049; E-mail: [email protected] (Anshu Sharma)
Get access

Abstract

The goal of this work is to study the properties of magnetically aligned CNT/PC nanocomposites towards the development of hydrogen gas separation membranes. A fraction (0.1 weight %) of synthesized carbon nanotubes (CNTs) have been dispersed homogeneously throughout polycarbonate (PC) matrix by ultrasonication. The alignment of CNT in PC matrix has been accomplished by applying an external magnetic field of 1200 Gauss. These nanocomposites have been studied by gas permeation using H2, N2 and Co2 electrical and dielectric constant measurements. Experimental results of gas permeability measurements exhibit here that H2 is more selective than N2 and Co2 in magnetically aligned nanocomposite membranes which can be used as good hydrogen separating media. I-V characteristics show the electron hopping like behavior and dielectric constant shows the enhancement in permittivity of these nanocomposites.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hummer, G., Rasaiah, J. C. and Noworyt, J. P., Nature London. 414, 185188 (2001).Google Scholar
Corry, B., Journal of Physical Chemistry B.112, 1427–34 (2008).Google Scholar
Holt, J. K., Park, H. G., Wang, Y., Stadermann, M. et al. ., Science.312, 1034–37(2006).Google Scholar
Miller, S. A., Young, V. Y., Martin, C. R.. 123 (49), 12335–42(2001).CrossRefGoogle Scholar
Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., Provencio, P. N., Science. 282, 1105–07(1998).Google Scholar
Zydney, A. L., Biotechnology and Bioengineering. 103, 227–30(2009).Google Scholar
Hine, P., Broome, V., Ward, I., Polymer 46 (24), 10936–44(2005).Google Scholar
Moniruzzaman, M., Winey, K. I., Macromolecules. 39, 51945205 (2006).Google Scholar
Mylvaganam, K., Zhang, L. C., Recent patents on nanotechnology. 1(1),5965(2007).Google Scholar
Majumder, M., Chopra, N., Andrews, R. and Hinds, B. J., Nature London. 44, 438(2005).Google Scholar
Arora, G. and Sandler, S. I., Nano Letters. 7, 565–69(2007).Google Scholar
Yun, S., Im, H., Heo, Y., Kim, J., Journal of Membrane Science. 380 (1-2), 208–15(2011).Google Scholar
Li, Y., He, G., Wang, S., Yu, S., Pan, F., Wu, H. and Jiang, Z., Journal of Material Chemistry A. 1, 10058–77(2013).Google Scholar
Bruggen, B. V., Nanotechnology. Article ID 693485, 117(2012).Google Scholar
Kueseng, P., Sae-oui, P., Sirisinha, C. , Jacob, K. I., Rattanasom, N., Polymer Testing. 32(7), 1229–36 (2013).Google Scholar
Zhang, L., Yang, J., Wang, X., Zhao, B. and Zheng, G., Nanoscale Research Letters. 9,448 (2014).Google Scholar
Zhang, L., Zhao, B., Wang, X., Liang, Y., Qiu, H., Zheng, G. P., Yang, J., Carbon. 66, 1117(2014).CrossRefGoogle ScholarPubMed
Dong, G., Li, H. and Chen, V., Journal of Material Chemistry A.1, 4610–30, 2013.Google Scholar
Goh, P. S., Ismail, A. F., Ng, B. C., Composites Part A: Applied Science and Manufacturing.56, 103126 (2014).Google Scholar
Zhang, W., Ravi, S. and Silva, P., Science. 29(1),114(2011).Google Scholar
Sharma, A., Kumar, S., Tripathi, B., Singh, M., Vijay, Y. K., International Journal of Hydrogen Energy.34, 3977–82 (2009).Google Scholar
Sharma, A., Tripathi, B. and Vijay, Y. K., Journal of Membrane Science.361, 8995(2010).Google Scholar
Sharma, A. and Vijay, Y. K., Advanced Science Letters. 4,586–90(2011).Google Scholar