Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T07:53:49.588Z Has data issue: false hasContentIssue false

High Performance Perovskite Solar Cells through Surface Modification, Mixed Solvent Engineering and Nanobowl-Assisted Light Harvesting

Published online by Cambridge University Press:  10 May 2016

Xianghong He
Affiliation:
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong. School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou, Jiangsu 213001, China.
Yang Bai
Affiliation:
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Haining Chen
Affiliation:
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Xiaoli Zheng
Affiliation:
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
Shihe Yang*
Affiliation:
Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
*
*corresponding author email: [email protected]
Get access

Abstract

In spite of the phenomenal efficiency progression of the organometal halide perovskite-based solar cells (PSCs) over the past few years, detailed understanding of the working mechanisms and effective measures to overcome the main weaknesses such as the long-term instability are of central importance. This paper provides a brief review of our most recent research on high-performance PSCs including the diethanolamine-modification of NiO surface, the mixed solvent engineering and the mesoporous TiO2 nanobowl (NB) array assisted light harvesting.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hao, F., Stoumpos, C. C., Liu, Z., Chang, R. P. H., and Kanatzidis, M. G., J. Am. Chem. Soc. 136, 16411 (2014).CrossRefGoogle Scholar
Zhou, H., Chen, Q., Li, G., Luo, S., Song, T. B., Duan, H. S., Hong, Z., You, J., Liu, Y., and Yang, Y., Science 345, 542 (2014).CrossRefGoogle Scholar
Green, M. A., Ho-Baillie, A., Snaith, H. J., Nat. Photonics 8, 506(2014).CrossRefGoogle Scholar
Stranks, S. D., Nayak, P. K., Zhang, W., Stergiopoulos, T., and Snaith, H. J., Angew. Chem. Int. Ed. 54, 3240(2015).CrossRefGoogle Scholar
Zuo, C., Bolink, H. J., Han, H., Huang, J., Cahen, D., and Ding, L., Adv. Sci. 2016, DOI: 10.1002/advs.201500324.Google Scholar
Shao, Y., Xiao, Z., Bi, C., Yuan, Y. and Huang, J., Nat. Commun. 2014, DOI: 10.1038/ncomms6784.Google Scholar
Yang, W. S., Noh, J. H., Jeon, N. J., Kim, Y. C., Ryu, S., Seo, J. and Seok, S. I., Science 348, 1234 (2015).CrossRefGoogle Scholar
Burschka, J., Pellet, N., Moon, S. J., Humphry-Baker, R., Gao, P., Nazeeruddin, M. K., Grätzel, M., Nature 499, 316 (2013).CrossRefGoogle Scholar
Zheng, F., Saldana-Greco, D., Liu, S.,and Rappe, A. M., J. Phys. Chem. Lett. 6, 4862 (2015).CrossRefGoogle Scholar
Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J. P., Leijtens, T., Herz, L. M., Petrozza, A., and Snaith, H. J., Science 342, 341 (2013).CrossRefGoogle Scholar
Grätzel, M., Nat. Mater. 13, 838 (2014).CrossRefGoogle Scholar
Beard, M. C., Luther, J. M. and Nozik, A. J., Nat. Nanotechnology 9, 951 (2014).CrossRefGoogle Scholar
Lotsch, B. V., Angew. Chem. Int. Ed. 53, 635 (2014).CrossRefGoogle Scholar
Christians, J. A., Herrera, P. A. M., and Kamat, P. V., J. Am. Chem. Soc. 137, 1530 (2015).CrossRefGoogle Scholar
Pellet, N., Gao, P., Gregori, G., Yang, T. Y., Nazeeruddin, M. K., Maier, J., and Grätzel, M., Angew. Chem. Int. Ed. 53, 3151 (2014).CrossRefGoogle Scholar
Im, J. H., Jang, I. H., Pellet, N., Grätzel, M. and Park, N. G., Nat. Nanotechnology 9, 927 (2014).CrossRefGoogle Scholar
Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H. and Kanatzidis, M. G., Lead-free solid-state organic–inorganic halide perovskite solar cells, Nat. Photonics 8, 489 (2014).CrossRefGoogle Scholar
You, J., Meng, L., Song, T. B., Guo, T. F., (Michael) Yang, Y., Chang, W. H., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., Marco, N. D., and Yang, Y., Nat. Nanotechnology 11, 75 (2016).CrossRefGoogle Scholar
Niu, G., Li, W., Meng, F., Wang, L., Dong, H., and Qiu, Y., J. Mater. Chem. A 2, 705 (2014).CrossRefGoogle Scholar
Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., and Han, H., Science 345, 295 (2014).CrossRefGoogle Scholar
Wei, Z., Zheng, X., Chen, H., Long, X., Wang, Z. and Yang, S., J. Mater. Chem. A 3, 16430 (2015).CrossRefGoogle Scholar
Noh, J. H., Im, S. H., Heo, J. H., Mandal, T. N., and Seok, S. I., Nano Lett. 13, 1764 (2013).CrossRefGoogle Scholar
Li, X., Dar, M. I., Yi, C., Luo, J., Tschumi, M., Zakeeruddin, S. M., and Grätzel, M., Nat. Chem. 7, 703 (2015).CrossRefGoogle Scholar
Niu, G., Guo, X. and Wang, L., J. Mater. Chem. A 3, 8970 (2015).CrossRefGoogle Scholar
Bai, Y., Chen, H., Xiao, S., Xue, Q., Zhang, T., Zhu, Z., Li, Q., Hu, C., Yang, Y., Hu, Z., Huang, F., Wong, K. S., Yip, H. L., and Yang, S., Adv. Funct. Mater. 2016, DOI: 10.1002/adfm.201505215.Google Scholar
Chen, H., Wei, Z., He, H., Zheng, X., Wong, K. S., and Yang, S., Adv. Energy Mater. 2016, DOI: 10.1002/aenm.201502087.Google Scholar
Zheng, X., Wei, Z., Chen, H., Zhang, Q., He, H., Xiao, S., Fan, Z., Wong, K. S. and Yang, S., Nanoscale, 2016, DOI: 10.1039/c5nr06715d.Google ScholarPubMed
Xu, X. B., Liu, Z. H., Zuo, Z. X., Zhang, M., Zhao, Z. X., Shen, Y., Zhou, H. P., Chen, Q., Yang, Y., and Wang, M. K., Nano Lett. 15, 2402 (2015).CrossRefGoogle Scholar
Hsu, H. Y., Wang, C. Y., Fathi, A., Shiu, J. W., Chung, C. C., Shen, P. S., Guo, T. F., Chen, P., Lee, Y. P., and Diau, E. W. G., Angew. Chem. Int. Ed. 53, 9339 (2014).CrossRefGoogle Scholar
Betancur, R., Maymo, M., Elias, X., Vuong, L. T., and Martorell, J., Sol. Energy Mater. Sol. Cells 95, 735 (2011).CrossRefGoogle Scholar
Zhu, Z. L., Bai, Y., Zhang, T., Liu, Z. K., Long, X., Wei, Z. H., Wang, Z. L., Zhang, L. X., Wang, J. N., Yan, F. and Yang, S., Angew. Chem. Int. Ed. 53, 12571 (2014).CrossRefGoogle Scholar
Zhu, Z. L., Ma, J. A., Wang, Z. L., Mu, C., Fan, Z. T., Du, L. L., Bai, Y., Fan, L. Z., Yan, H., Phillips, D. L., and Yang, S., J. Am. Chem. Soc. 136, 3760(2014).CrossRefGoogle Scholar
Zuo, L. J., Gu, Z. W., Ye, T., Fu, W. F., Wu, G., Li, H. Y., and Chen, H. Z., J. Am. Chem. Soc. 137, 2674(2015).CrossRefGoogle Scholar
Xue, Q. F., Sun, C., Hu, Z. C., Huang, F., Yip, H. L., and Cao, Y., Acta Chim. Sin. 73, 179(2015).CrossRefGoogle Scholar
Shih, Y. C., Wang, L. Y., Hsieh, H. C., and Lin, K. F., J. Mater. Chem.A 3, 9133 (2015).CrossRefGoogle Scholar
Wei, Z., Chen, H., Yan, K., and Yang, S., Angew. Chem. Int. Ed. 126, 13455 (2014).CrossRefGoogle Scholar
Wei, Z., Yan, K., Chen, H., Yi, Y., Zhang, T., Long, X., Li, J., Zhang, L., Wang, J., and Yang, S., Energy Environ. Sci. 7, 3326 (2014).CrossRefGoogle Scholar
Yan, K. Y., Wei, Z. H., Li, J. K., Chen, H. N., Yi, Y., Zheng, X. L., Long, X., Wang, Z. L., Wang, J. N., Xu, J. B., and Yang, S., Small 11, 2269 (2015).CrossRefGoogle ScholarPubMed
Chen, H., Wei, Z., Zheng, X., and Yang, S., Nano Energy 15, 216 (2015).CrossRefGoogle Scholar
Zhang, F., Yang, X., Wang, H., Cheng, M., Zhao, J., and Sun, L., ACS Appl. Mater. Interfaces 6, 16140 (2014).CrossRefGoogle ScholarPubMed
Zhou, H. W., Shi, Y. T., Dong, Q. S., Zhang, H., Xing, Y. J., Wang, K., Du, Y., and Ma, T. L., J. Phys. Chem. Lett. 5, 3241 (2014).CrossRefGoogle Scholar
Ke, W. J., Fang, G. J., Liu, Q., Xiong, L. B., Qin, P. L., Tao, H., Wang, J., Lei, H. W., Li, B. R., Wan, J. W., Yang, G. and Yan, Y. F., J. Am. Chem. Soc. 137, 6730 (2015).CrossRefGoogle Scholar
Jeon, N. J., Noh, J. H., Kim, Y. C., Yang, W. S., Ryu, S. and Seok, S. I., Nature Mater. 13, 897 (2014).CrossRefGoogle Scholar
Zhao, Y. X., Nardes, A. M. and Zhu, K., J. Phys. Chem. Lett. 5, 490 (2014).CrossRefGoogle Scholar
Leijtens, T., Lauber, B., Eperon, G. E., Stranks, S. D. and Snaith, H. J., J. Phys. Chem. Lett. 5, 1096 (2014).CrossRefGoogle Scholar