Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T03:15:22.523Z Has data issue: false hasContentIssue false

High Fidelity Polycrystalline CdTe/CdS Heterostructures via Molecular Dynamics

Published online by Cambridge University Press:  20 June 2017

Rodolfo Aguirre*
Affiliation:
The University of Texas at El Paso El Paso, Texas 79968, U.S.A
Jose J. Chavez
Affiliation:
Sandia National Laboratories Livermore, CA 94550, U.S.A
Xiaowang Zhou
Affiliation:
Sandia National Laboratories Livermore, CA 94550, U.S.A
David Zubia
Affiliation:
The University of Texas at El Paso El Paso, Texas 79968, U.S.A
*
Get access

Abstract

Molecular dynamics simulations of polycrystalline growth of CdTe/CdS heterostructures have been performed. First, CdS was deposited on an amorphous CdS substrate, forming a polycrystalline film. Subsequently, CdTe was deposited on top of the polycrystalline CdS film. Cross-sectional images show grain formation at early stages of the CdS growth. During CdTe deposition, the CdS structure remains almost unchanged. Concurrently, CdTe grain boundary motion was detected after the first 24.4 nanoseconds of CdTe deposition. With the elapse of time, this grain boundary pins along the CdS/CdTe interface, leaving only a small region of epitaxial growth. CdTe grains are larger than CdS grains in agreement with experimental observations in the literature. Crystal phase analysis shows that zinc blende structure dominates over the wurtzite structure inside both CdS and CdTe grains. Composition analysis shows Te and S diffusion to the CdS and CdTe films, respectively. These simulated results may stimulate new ideas for studying and improving CdTe solar cell efficiency.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balcioglu, A., Ahrenkiel, R. K., and Hasoon, F., J. Appl. Phys. 88, 12 (2000).CrossRefGoogle Scholar
Birkmire, R. W. and Eser, E., Annu. Rev. Mater. Sci. 27 (1997).CrossRefGoogle Scholar
Shockley, W. and Queisser, H. J., J. Appl. Phys. 32, 3 (1961).Google Scholar
First solar press release, 2016. Available at: http://investor.firstsolar.com/releasedetail.cfm?ReleaseID=956479 (accessed 1 May 2017).Google Scholar
Chin, K. K., Sol. Energy Mater. Sol. Cells (2010).Google Scholar
Tuteja, M., Koirala, P., MacLaren, S., Collins, R., and Rockett, A., Appl. Phys. Lett. 107, 142106 (2015).CrossRefGoogle Scholar
Li, C., Wu, Y., Pennycook, T. J., Lupini, A. R., Leonard, D. N., Yin, W., Paudel, N., Al-Jassim, M., Yan, Y., and Pennycook, S. J.. Phys. Rev. Lett. 111, 096403 (2013).CrossRefGoogle Scholar
Li, C., Wu, Y., Poplawsky, J., Pennycook, T. J., Paudel, N., Yin, W., Haigh, S. J., Oxley, M. P., Lupini, A. R., Al-Jassim, M., Pennycook, S. J., and Yan, Y.. Phys. Rev. Lett. 112, 156103 (2014).CrossRefGoogle Scholar
Strevel, N., Trippel, L., Kotarba, C., and Khan, I.. Photovoltaics International, 22th edition.Google Scholar
Sun, C., Paulauskas, T., Sen, F. G., Lian, G., Wang, J., Buurma, C., Chan, M. K. Y., Klie, R. F., and Kim, M. J.. Scientific Reports, 6, 27009 (2016).CrossRefGoogle Scholar
Plimpton, S., Comp, J.. Phys. 117, 1 (1995).Google Scholar
Stillinger, F. H. and Weber, T. A.. Phys. Rev. B. 33, 1451 (1986).CrossRefGoogle Scholar
Zhou, X. W., Ward, D. K., Martin, J. E., van Swol, F. B., Cruz-Campa, J. L., and Zubia, D.. Phys. Rev. B. 88, 085309 (2013).CrossRefGoogle Scholar
Almeida, S., Ochoa, E., Chavez, J. J., Zhou, X. W. and Zubia, D.. J. Cryst. Growth. 423, (2015).CrossRefGoogle Scholar
Chavez, J. J., Zhou, X. W., Almeida, S. F., Aguirre, R., and Zubia, D.. J. Mater. Sci. Res. 5, 3 (2016).Google Scholar
Zhou, X. W., Chavez, J. J., Almeida, S., and Zubia, D.. J. Appl. Phys. 120, 045304 (2016).CrossRefGoogle Scholar
Stukowski, A., Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010).CrossRefGoogle Scholar
Li, C., Poplawsky, J., Paudel, N., Pennycook, T. J., Haigh, S. J., Al-Jassim, M. M., Yan, Y., and Pennycook, S. J.. IEEE J. Photovolt. 4, 6 (2014).Google Scholar