Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T16:35:49.694Z Has data issue: false hasContentIssue false

High and low activation energy kinetics are different: Implications for hydrogen and protons in condensed matter

Published online by Cambridge University Press:  31 January 2017

Arthur Yelon*
Affiliation:
Department of Engineering Physics, Polytechnique Montreal, PO Box6079, Station C-V, Montreal, QC H3C 3A7, Canada, and Réseau Québecois sur des Matériaux de Pointe (RQMP)
*
Get access

Abstract

At high activation energy, kinetic processes require the accumulation of several excitations in order to take place. This accumulation implies an entropy, which we call multi-excitation entropy. This explains the isokinetic rule, which itself explains the existence of isoequilibrium relations. Understanding the implications of these effects helps clarify the microscopic mechanisms in kinetic processes, including hydrogen storage, and transport of protons, and potentially, of other ions, in condensed matter.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Jones, A.G., Geochem. Geophys. Geosyst. 15, 2616 (2014).CrossRefGoogle Scholar
Chen, Q., Braun, A., et al., Appl. Phys. Lett. 97, 041902 (2010).CrossRefGoogle Scholar
Ding, J., Balachandran, J. et al., presented at the 2016 MRS Fall Meeting, Boston, MA. CA, 2016 (unpublished).Google Scholar
Miller, A. and Abrahams, E., Phys. Rev. 120, 745 (1960).CrossRefGoogle Scholar
Glasstone, S., Laidler, K.J., and Eyring, H., The Theory of Rate Processes (McGraw-Hill, New York, 1941).Google Scholar
Yelon, A., Movaghar, B., and Crandall, R.S., Rep. Prog. Phys. 69, 1145 (2006).CrossRefGoogle Scholar
Linert, W. and Yelon, A., eds., Isokinetic Relationships, Monatshefte fur Chemie Chemical Monthly, 144, Number 1, (2013).Google Scholar
Overhof, H. and Thomas, P., Electronic Transport in Hydrogenated Amorphous Semiconductors (Springer, New York, 1989),CrossRefGoogle Scholar
Yelon, A., Movaghar, B., and Branz, H.M., Phys. Rev. B 46, 12244 (1992).CrossRefGoogle Scholar
Yelon, A, Sacher, E., and Linert, W., Catal. Lett. 141, 954 (2011).CrossRefGoogle Scholar
Abdel-Wahab, F., Montaser, A.A., and Yelon, A., Monatsh. Chem. 144, 83 (2013).CrossRefGoogle Scholar
Abdel-Wahab, F., and Yelon, A., J. Appl. Phys. 114, 0223707 (2013).CrossRefGoogle Scholar
Shimakawa, K. and Abdel-Wahab, F., J. Non-Cryst. Solids, 70, 652 (1997).Google Scholar
Wang, J.C. and Chen, Y.F., Appl. Phys. Lett. 73, 948 (1998).CrossRefGoogle Scholar
Savransky, S.D. and Yelon, A., Phys. Status Solidi A 207, 627 (2010).CrossRefGoogle Scholar
Uvarov, N.F. and Hairetdinov, E.F. J. Solid State Chem. 62, 1 (1986).CrossRefGoogle Scholar
Almond, D.P. and West, A.R., Solid State Ionics 23, 27 (1987).CrossRefGoogle Scholar
Wu, X. and Zheng, Y.-F., Appl. Phys. Lett. 87, 252116 (2005).CrossRefGoogle Scholar
Jones, A.G., Geochem. Geophys. Geosyst. 15, 337 (2014).CrossRefGoogle Scholar
Braun, A. and Chen, Q., presented at the 2016 MRS Fall Meeting, Boston, MA. CA, 2016 (unpublished).Google Scholar
Rolandi, M., presented at the 2016 MRS Fall Meeting, Boston, MA. CA, 2016 (unpublished).Google Scholar
Braun, A., Ovalle, A. et al., Appl. Phys. Lett. 95, 224103 (2009)CrossRefGoogle Scholar
Tang, W.S., Chotard, J.-N., Raybaud, P., and Janot, R., J. Phys. Chem. C 118, 3409 (2014).CrossRefGoogle Scholar
Huot, J., private communication.Google Scholar