Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T15:02:16.274Z Has data issue: false hasContentIssue false

Heat Input Effect on the Microstructure of Twinning-Induced Plasticity (TWIP) Steel Welded Joints Through the GTAW Process

Published online by Cambridge University Press:  05 November 2018

H. Hernández-Belmontes
Affiliation:
Departamento de Metalurgia Mecánica, Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-3” Ciudad Universitaria, 58030 Morelia, Michoacán, México. E-mail: [email protected], [email protected]
I. Mejía*
Affiliation:
Departamento de Metalurgia Mecánica, Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-3” Ciudad Universitaria, 58030 Morelia, Michoacán, México. E-mail: [email protected], [email protected]
V. García-García
Affiliation:
Departamento de Metalurgia Mecánica, Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-3” Ciudad Universitaria, 58030 Morelia, Michoacán, México. E-mail: [email protected], [email protected]
C. Maldonado
Affiliation:
Departamento de Soldadura, Instituto de Investigación en Metalurgia y Materiales, Universidad Michoacana de San Nicolás de Hidalgo, Edificio “U-3” Ciudad Universitaria, 58030 Morelia, Michoacán, México
*
Get access

Abstract

High-Mn Twinning Induced Plasticity (TWIP) steels are an excellent alternative in the design of structural components for the automotive industry. The TWIP steels application allows weight reduction, maintaining the performance of vehicles. Nowadays the research works focused on TWIP steel weldability are relative scarce. It is well-known that weldability is one of the main limitations for industrial application of TWIP steel. The main goal of this research work was studied the effect of heat input on the microstructural changes generated in a TWIP steel microalloyed with Ti. A pair of welds were performed through Gas Tungsten Arc Welding (GTAW) process. The GTAW process was carried out without filler material, using Direc Current Electrode Negative (DCEN), tungsten electrode EWTh-2 and Ar as shielding gas. The microstructure and average grain size in the fusion (FZ) and heat affected zone (HAZ) were determined by light optical metallography (LOM). Elements segregation in the FZ was evaluated using point and elemental mapping chemical analysis (EPMA) by Scanning Electron Microscopy and Electron Dispersive Spectroscopy (SEM-EDS). Phase transformations were evaluated using X-ray diffraction (XRD). Finally, the hardness were measured by means of Vickers microhardness testing (HV500). The results show that the FZ is characterized by a dendritic solidification pattern. Meanwhile, the HAZ presented equiaxed grains in both weld joints. On the other hand, the TWIP-Ti steel weldments did not present austenite phase transformations. Nevertheless, the FZ exhibited variations in the chemical elements distribution (Mn, Al, Si and C), which were higher as the heat input increases. Finally, the heat input reduced the microhardness of TWIP-Ti steel weld joints. Although post-welding hardness recovery was detected, which is associated with precipitation of Ti second-phase particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allain, S., Chateau, J. -P., Bouaziz, O., Migot, S. and Guelton, N., Mater. Sci. Eng. A. 387-389, 158-162 (2004).CrossRefGoogle Scholar
Frommeyer, G., Brüx, U. and Neumann, P., ISIJ Int. 43, 438-446 (2003).CrossRefGoogle Scholar
Grässel, O., Frommeyer, G., Derder, C. and Hofmann, H., J. Phys. IV. 7, 383-388 (1997).Google Scholar
Grässel, O., Krüger, L., Frommeyer, G. and Meyer, L. W., Int. J. Plast. 16, 1391-1409 (2000).CrossRefGoogle Scholar
Bandyopadhyay, K., Panda, S. K. and Saha, P., J. Mater. Eng. Perform. 23, 1465-1479 (2014).CrossRefGoogle Scholar
Shindell, D., Faluvegi, G., Walsh, M., Anenberg, S. C., Dingenen, R. V., Muller, N.Z., Austin, J., Koch, D. and Milly, G., Nat. Clim. Chang. 1, 59-66 (2011).CrossRefGoogle Scholar
Kim, H., McMillan, C., Keoleian, G. A. and Skerlos, S. J., J. Ind. Ecol. 14, 929-946 (2010).CrossRefGoogle Scholar
Holovenko, O., Ienco, M.G., Pastore, E., Pinasco, M. R., Matteis, P., Scavino, G. and Firrao, D., La Metalurgia Italiana, 3, 3-12 (2013).Google Scholar
De Cooman, B. C., Chin, K. and Kim, J., New Trends and Developments in Automotive System Engineering, 101-128 (2011).Google Scholar
Lee, C., Jaehong, Y., Kim, S., Park, Y. and Choi, J., In: Proceedings of the 1st International Conference on High Manganese Steels, Seoul. F-7 (2011).Google Scholar
Salas-Reyes, A. E., Mejía, I., Bedolla-Jacuinde, A., Boulaajaj, A., Calvo, J. and Cabrera, J. M., Mater. Sci. Eng. A 611, 77-89 (2014).CrossRefGoogle Scholar
Bleck, W., Phiu-on, K., in: Haldar, A., Suwas, S. and Bhattacharjee, D., Springer, 145-146 (2009).Google Scholar
Pierson, H.O., Handbook of Refractory Carbides and Nitrides, William Andrew. 1st Ed, (1996).Google Scholar
Bouaziz, O., Allain, S., Scott, C. P., Cugy, P. and Barbier, D., Curr. Opin. Solid State Mater. Sci. 15, 141-168 (2011).CrossRefGoogle Scholar
Roncery, L. M., Weber, S. and Theisen, W., Scr. Mater. 66, 997-1001 (2012).CrossRefGoogle Scholar
Mujica, L., Weber, S., Thomy, C. and Vollertsen, F., Sci. Technol. Weld. Join. 14, 517-522 (2009).CrossRefGoogle Scholar
Sabet, M., Zarei-Hanzaki, A. and Khoddam, S., J. Eng. Mater. Technol. 131, 1-5 (2009).CrossRefGoogle Scholar
Fisher, K. and Kurz, W., Trans Tech Publications. 4th Ed, (1998).Google Scholar
Easterling, K., Introduction to Physical Metallurgy of Welding, Butterworth-Heinemann. 2nd Ed, (1992).Google Scholar
Kou, S., Welding Metallurgy, John Wiley & Sons, Inc., Hoboken, New Jersey. 2nd Ed, (2003).Google Scholar
Debroy, T. and David, S. A., Rev. Mod. Phys. 67, 85-112 (1995).CrossRefGoogle Scholar
Smallman, R. E., Ngan, A. H. W., Physical Metallurgy of Advanced Materials, Butterworth-Heinemann. 7th Ed, (2007).Google Scholar