Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T19:34:11.319Z Has data issue: false hasContentIssue false

Greenhouse Effect in Photovoltaic Cells to Enhance Efficiency of Power Beam Conversion

Published online by Cambridge University Press:  03 January 2019

Andrei Sergeev*
Affiliation:
U.S. Army Research Laboratory, Adelphi, MD 20783, USA
Andrew Hewitt
Affiliation:
U.S. Army Research Laboratory, Adelphi, MD 20783, USA
Harry Hier
Affiliation:
U.S. Army Research Laboratory, Adelphi, MD 20783, USA
C. Mike Waits
Affiliation:
U.S. Army Research Laboratory, Adelphi, MD 20783, USA
Myles A. Steiner
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401, USA
Kimberly Sablon
Affiliation:
Office of the Deputy Assistant Secretary of the Army for Research and Technology, Arlington, VA, USA
*
Get access

Abstract

Recent progress in semiconductor materials with minor nonradiative recombination has stimulated investigations of novel photovoltaic (PV) converters with optical control of radiative emission. Angle restricted emission was experimentally demonstrated in PV devices with external photon recycling due to specific photonic crystals or mirrors. In this work we investigate the power beam conversion by the cell with front “greenhouse” filter, which transmits the laser light, but recycles the low energy bandgap quanta emitted by the semiconductor cell. We calculate the limiting characteristics of the greenhouse PV converters and optimize design of the converter taking into account the nonradiative recombination processes. In optimized devices addition of the greenhouse filter can increase power beam conversion efficiency by several percent.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kosten, E. D., Atwater, J. H, Parsons, J., Polman, A., and Atwater, H. A., Light: Sci. Appl. 2, 45 (2013).CrossRefGoogle Scholar
Kosten, E. D., Kayes, B. M., and Atwater, H. A., Energy Environ. Science 7, 1907 (2014).CrossRefGoogle Scholar
Braun, A., Katz, E. A., Feuermann, D., Kayes, B. M., and Gordon, J. M., Energy Environ. Science 6, 1499 (2013).CrossRefGoogle Scholar
Olsen, L. C., Huber, D. A., Dunham, G., and Addis, F. W., Proceedings of the 22nd IEEE Photovoltaic Specialist Conference (IEEE, New York, 1991), p. 419.Google Scholar
Shan, T. and Qi, X., Infrared Phys. Technol. 71, 144 (2015).CrossRefGoogle Scholar
Oliva, E., Dimroth, F., and Bett, A. W., Progress Photovoltaics: Res. Appl. 16, 289 (2008).CrossRefGoogle Scholar
Schubert, J., Oliva, E., Dimroth, F., Loeckenhoff, R., and Bett, A. W., IEEE Trans. Electron Dev. 56, 170 (2009).CrossRefGoogle Scholar
Khvostikov, V. P., Sorokina, S. V., Potapovich, N. S., Khvostikova, O. A., and Timoshina, N. Kh., Semiconductors 51, 645 (2017).CrossRefGoogle Scholar
Guan, C.G., Li, L., Ji, H.-M., Luo, S., Xu, P.F., Gao, Q. , Lv, H., and Liu, W., IEEE Photovoltaics 8, 1355 (2018).CrossRefGoogle Scholar
Sergeev, A. and Sablon, K., Phys. Rev. Applied, accepted (2018).Google Scholar
Munday, J. N., J. Appl. Phys. 112, 064501 (2012).CrossRefGoogle Scholar
Steiner, M.A., Geisz, J. F., García, I., Friedman, D.J., Duda, A., Kurtz, S.R., J. Appl. Phys. 113, 123109 (2013).CrossRefGoogle Scholar
Schnitzer, I., Yablonovitch, E., Caneau, C., and Gmitter, T. J., Appl. Phys. Lett. 62, 131 (1993).CrossRefGoogle Scholar