Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T22:47:53.170Z Has data issue: false hasContentIssue false

Gelatin biotemplated platinum aerogels

Published online by Cambridge University Press:  08 June 2018

Fred J. Burpo*
Affiliation:
Department of Chemistry and Life Science, United States Military Academy, West Point, NY10996, USA
Alexander N. Mitropoulos
Affiliation:
Department of Chemistry and Life Science, United States Military Academy, West Point, NY10996, USA Department of Mathematical Sciences, United States Military Academy, West Point, NY10996, USA
Enoch A. Nagelli
Affiliation:
Department of Chemistry and Life Science, United States Military Academy, West Point, NY10996, USA
Madeline Y. Ryu
Affiliation:
Department of Chemistry and Life Science, United States Military Academy, West Point, NY10996, USA
Jesse L. Palmer
Affiliation:
Department of Chemistry and Life Science, United States Military Academy, West Point, NY10996, USA
Get access

Abstract

Here gelatin biotemplated platinum aerogels were prepared from gelatin hydrogels equilibrated in K2PtCl4 solutions ranging from 1-250 mM and reduced with sodium borohydride before supercritical drying in liquid CO2. Scanning electron microscopy revealed an average ligament diameter of 40.6 ± 9.7 nm and a pore size range of ∼10 – 200 nm. Thermogravimetric analysis correlated the ratio of metal content to biotemplate mass as a function of equilibrated platinum ion solution, and X-ray diffractometry indicated platinum metal with no detectable oxide phases. Electrochemical impedance spectroscopy indicated a specific capacitance of 1.92 F/g, with a corresponding specific electrochemical accessible surface area of 6.39 m2/g. Cyclic voltammetry performed in H2SO4 demonstrated biotemplated platinum aerogel potential for catalytic and energy storage applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

denotes equal contribution

References

REFERENCES

Dyson, H.J. and Wright, P.E., Nat. Rev. Mol. Cell Biol. 6, 197 (2005).CrossRefGoogle Scholar
Waugh, D.F., J. Cell. Comp. Physiol. 49, 145 (1957).CrossRefGoogle Scholar
Parenteau-Bareil, R., Gauvin, R., and Berthod, F., Materials (Basel). 3, 1863 (2010).CrossRefGoogle Scholar
Gottlieb, D., Morin, S.A., Jin, S., and Raines, R.T., J. Mater. Chem. 18, 3865 (2008).CrossRefGoogle Scholar
Jung, J.P., Gasiorowski, J.Z., and Collier, J.H., Biopolymers 94, 49 (2010).CrossRefGoogle Scholar
Navaei, A., Saini, H., Christenson, W., Sullivan, R.T., Ros, R., and Nikkhah, M., Acta Biomater. 41, 133 (2016).CrossRefGoogle Scholar
Guiseppi-Elie, A., Biomaterials 31, 2701 (2010).CrossRefGoogle Scholar
Shi, Y., Ma, C., Peng, L., and Yu, G., Adv. Funct. Mater. 25, 1219 (2015).CrossRefGoogle Scholar
Rolison, D.R. and Dunn, B., J. Mater. Chem. 11, 963 (2001).CrossRefGoogle Scholar
Lu, Y., He, W., Cao, T., Guo, H., Zhang, Y., Li, Q., Shao, Z., Cui, Y., and Zhang, X., Sci. Rep. 4, 5792 (2014).CrossRefGoogle Scholar
Williams, J.R., Clifford, A.A., and al-Saidi, S.H.R., Mol. Biotechnol. 22, 263 (2002).CrossRefGoogle Scholar
Kang, H.W., Tabata, Y., and Ikada, Y., Biomaterials 20, 1339 (1999).CrossRefGoogle Scholar
Orgaz, E. and Gupta, M., J. Phys. Condens. Matter 5, 6697 (1993).CrossRefGoogle Scholar
Restori, R. and Schwarzenbach, D., Z. Naturforsch. 48a, 12 (1993).Google Scholar
Nyczyk, A., Sniechota, A., Adamczyk, A., Bernasik, A., Turek, W., and Hasik, M., Eur. Polym. J. 44, 1594 (2008).CrossRefGoogle Scholar
Burpo, F.J., Nagelli, E.A., Morris, L.A., McClure, J.P., Ryu, M.Y., and Palmer, J.L., J. Mater. Res. 32, 4153 (2017).CrossRefGoogle Scholar
Magnus, G., Pogg. Ann 14, 239 (1828).Google Scholar
Magnus, G., Ann. Chim. Phys. 2, 110 (1829).Google Scholar